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Abstract—Artificial intelligence (AI) is increasingly used in
the automotive industry for applications such as driving style
classification, which aims to improve road safety, efficiency,
and personalize user experiences. While deep learning (DL)
models, such as Long Short-Term Memory (LSTM) networks,
excel at this task, their ‘“black-box’’ nature limits interpretability
and trust. This paper proposes a machine learning (ML)-based
method that balances high accuracy with interpretability. We
introduce a high-quality dataset, “CARLA-Drive”, and leverage
ML techniques like Random Forest (RF), Gradient Boosting (XG-
Boost), and Support Vector Machine (SVM), which are efficient,
lightweight, and interpretable. In addition, we apply the SHAP
(Shapley Additive Explanations) explainability technique to pro-
vide personalized recommendations for safer driving. Achieving
an accuracy of 0.92 on a three-class classification task with both
RF and XGBoost classifiers, our approach matches DL models
in performance while offering transparency and practicality for
real-world deployment in intelligent transportation systems.

Index Terms—Driving Style Recognition, Recommendation
System, Intelligent Transportation System, Machine Learning,
Deep Learning, eXplainable Al

I. INTRODUCTION

Artificial intelligence (AI) has significantly reshaped the
automotive industry, particularly in the development of semi-
autonomous and intelligent vehicles. Al-driven systems are
now integral for navigation, collision avoidance, and adaptive
cruise control, significantly enhancing driving safety and effi-
ciency. In parallel, the rise of intelligent transportation systems
has been supported by the development of network archi-
tectures [1] that include sensors and vehicle-to-infrastructure
(V2I) communication which enable real-time monitoring of
driver behavior. This change sparked a lot of interest in
leveraging Al techniques for driving behavior analysis and
classification.

Driving style classification aims to categorize drivers based
on their unique behavioral patterns, with various application
ranging from road safety enhancement, battery consumption
optimization, and personalized user experiences. To this end,
Machine Learning (ML) and Deep Learning (DL) models
process vast amounts of sensor data such as Global Position-
ing Systems (GPS), accelerometer, and vehicle telemetry, to
capture intricate driving patterns.

Among DL techniques, LSTM networks have been widely
deployed due to their efficacy in capturing temporal depen-

dencies within sequential driving data. Different classification
schemes have been investigated in previous work; some use
three-class categorization [2]-[4], some extend to as many as
seven classes [3], and some distinguish between two driving
styles [6]]. In particular, the three-class approach appears to
be the most widely used since it strikes a balance between
practical usability and granularity. Hence, our study adopts this
widely adopted three-class classification framework. However,
while DL methods achieve high accuracy, their “black-box”
nature limits interpretability, making it difficult to understand
and trust model predictions.

In this paper, we present a framework for ML-based driving
style classification that achieves a balance between perfor-
mance and interpretability. In contrast to DL models, which
lack transparency, our method’s decisions are explainable,
which is important for promoting trust and usability.

Main contributions: To bridge the gap in driving style clas-
sification, our work presents the following key contributions:

o We leverage the CARLA simulato to generate a high-
quality dataset, “CARLA-Drive”, ensuring a realistic and
diverse range of driving scenarios. Our dataset is four
times the size of the UAH-DriveSet dataset [7]], providing
a larger volume of data for model training and evaluation.

o We propose an ML approach using Support Vector Ma-
chine (SVM), Random Forest (RF), and XGBoost clas-
sifiers, which deliver comparable learning performance
compared to DL approaches while ensuring higher inter-
pretability and explainability.

o We take advantage of the explainability of our proposed
classification approach to develop a recommendation sys-
tem that leverages the interpretability of classification
decisions to provide insights guiding the driver toward
safer and more efficient driving.

II. BACKGROUND AND RELATED WORK

This section reviews existing approaches for classifying
driving styles, highlights their limitations, and outlines how
eXplainable AI (XAI) can enhance driving profile recognition.
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A. Driving Style Classification

Several ML and DL approaches have been explored for driv-
ing style classification. Saleh et al. [2] propose a DL approach
that uses a stacked LSTM network. Their method classifies
driving behavior into normal, aggressive, or drowsy cate-
gories by directly processing time-series data from smartphone
sensors (including inertial measurements, GPS, and camera
data ) within the UAH-DriveSet [7]. Although they achieved
a high Fl-score of 91%—surpassing baseline methods like
multilayer perceptron (MLP) and decision trees (DT)— the
approach’s ability to generalize may be restricted by the
inherent properties of the dataset.

In contrast, Zhao et al. [§] introduce S-TCN, a temporal
convolutional network (TCN)-based approach that integrates
a sensor attention mechanism and soft thresholding to reduce
noise. Their method captures long-term dependencies across
five sensor modalities and achieves a 2.24% accuracy improve-
ment over state-of-the-art baselines across four public datasets
(VDB [9], MDBD [10]], DD [11], and UAH [7]).

Hwang et al. 6] present an advanced driver assistance sys-
tem (ADAS) customization framework that adapts to driving
style—classified as assertive or defensive—using SVM. Lever-
aging the CARLA simulator, the study collects driving data
from three scenarios (city roads, highways, and winding roads)
and extracts 30 sensor-based features (e.g., speed, steering
angle, acceleration) to identify key ADAS parameters (e.g.,
lane-changing frequency, speed preferences). Although the
framework improves personalized ADAS settings, its binary
classification may overlook hybrid driving styles.

Matousek et al. [12] use three unsupervised and semi-
supervised machine learning algorithms, namely: k-Nearest
Neighbors (k-NN), SVM and Isolation Forest (iForest). They
distinguish between normal and aggressive driver behavior
based on outlier detection, and evaluate their approaches
using simulations based on the realistic LuST traffic scenario
[13]. The results show that the k-NN and iForest algorithms
perform well in detecting abnormal driving behavior, with high
detection rates and low false positive rates, while the SVM
algorithm did not produce satisfying results.

Although the aforementioned methods and others [3[], [9]]
achieve high performance, many of them come at the expense
of high computational complexity and do not attempt to
consider how interpretable model decisions are. This high-
lights a gap in the existing classification of driving styles, as
understanding the reasoning behind these decisions is crucial
in safety-critical applications. Our work attempts to tackle
these limitations by integrating XAI techniques with an ML-
based approach that prioritizes efficiency and maintains com-
parable performance. We show that this combination enables
actionable recommendations and ensures transparent, efficient,
and reliable decisions for real-time use.

B. Explainable & Interpretable Al

As the use of machine learning models in applications where
safety is paramount continues to grow, notably in intelligent
transportation applications, the need for explainability and

interpretability has increased. XAl seeks to make the decision-
making of AI models explicit by identifying which input
characteristics influence their output. This allows the user of
the model to verify, trust, and develop an understanding of
how to act based on the predictions made by the model.

Moreover, recent regulatory initiatives further reinforce the
need for transparency. In particular, the proposed EU Al ACIE]
stresses the importance of transparency and human oversight
in high-risk Al systems, thereby reinforcing the need for ex-
plainable models. Such regulatory frameworks are a significant
driving force behind current research efforts aimed at making
Al systems both trustworthy and comprehensible.

Several methodologies have emerged to address the XAI
challenges through data and model explainability. Specifi-
cally, Post-hoc explanation methods—such as SHAP [14]]
and LIME (Local Interpretable Model-Agnostic Explanations)
[15]—provide instance-level insights by quantifying the im-
pact of individual features on a model’s output.

Our work capitalizes on the above techniques to offer a
model that is both accurate and transparent. Moreover, the
proposed approach aligns regulatory frameworks like the EU’s
General Data Protection Regulation (GDPR) that emphasize
the “right to explanatioﬂ’ for algorithmic decisions. To our
knowledge, this is the first attempt to incorporate explainability
and interpretability into driving style classification, with the
potential to enhance key transportation applications such as
insurance telematics, fleet management, and ADAS systems.

III. METHODOLOGY

In this section, we detail the methodology underpinning our
approach to driving style classification and recommendation,
as summarized in Fig |I} We start by generating a diverse
driving dataset using the CARLA simulator. After adequate
preprocessing, we use an LSTM network to validate our
dataset, we then extract key features for classification using
interpretable ML techniques such as Random Forest and XG-
Boost. Finally, by integrating explainable Al using SHAP, we
provide actionable driver recommendations alongside transpar-
ent classifications.

A. Dataset Generation

We used the CARLA simulator (v0.9.15) to generate syn-
thetic driving data in urban and highway settings. Our ex-
periments were conducted on a Dell Precision 3581 with a
13th Gen Intel Core i9-13900H and an NVIDIA RTX-2000
Ada, resulting in over 45 hours of collected driving data.
To ensure diversity, we included various levels of traffic and
pedestrian activity in city environments, with different driving
profiles (conservative, normal, aggressive) influencing vehicle
dynamics. A fixed 0.05-second time-step synchronous mode
ensured consistency in measurements. The following sections
detail key aspects of our dataset generation.
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Fig. 1: Flow chart for the proposed approach.

1) Data Generation & Collection: We define our driving
profiles—cautious, normal, and aggressive—by quantifying
key behavioral metrics: adherence to speed limits, maximum
achievable speed, braking distance, minimum gap to the
leading vehicle (capturing tailgating and following behavior),
and distinct acceleration and braking inputs. This combination
effectively differentiates the three styles.

Our data generation pipeline leverages CARLA’s extensive
sensor suite and API via custom Python scripts interfacing
with its client-server architecture. Specifically, we use the
Inertial Measurement Unit (IMU) sensor to capture acceler-
ation (across X, y, and z axes), angular velocity, and instanta-
neous speed—where aggressive driving exhibits high variance
and abrupt changes, while cautious driving shows smoother,
gradual adjustments. Additionally, we employ the obstacle
sensor to record the distance to the vehicle immediately ahead
(within a 10.5-meter range), a critical measure for assessing
following behavior. Contextual road data, including speed
limits and driving behavior labels, is also recorded. All data
is logged as time series, capturing continuous variations in
driving dynamics in real time, and stored in structured CSV
files.

2) Data Preprocessing: The generated data underwent pre-
processing to refine the time series for effective analysis and
model training. This process consisted of two phases:

o Data Cleaning We ensured data quality by removing
anomalous early measurements, likely caused by sensor
noise or simulation initialization, through statistical anal-
ysis. Series that were too short or dominated by vehicle
stoppages were also discarded. For the obstacle sensor,
missing values (when no vehicle was detected within
the 10.5-meter range) were imputed with the maximum
sensor range.

o Window Slicing We used a window slicing technique
to segment the continuous time series into fixed-length
sequences, with each window representing a short-term
snapshot of driving behavior for model training. Specif-
ically, we adopted a window size of 600 time steps,
corresponding to 30 seconds of driving data with a
fixed time step of 0.05 seconds. This provides suffi-
cient temporal context to capture key patterns in vehi-
cle dynamics and driving behavior variations. Moreover,
segments dominated by non-informative behaviors, such
as prolonged stoppages, were identified and excluded to
maintain dataset relevance.

B. Driving Style Classification

We first apply deep learning for driving style classification
and then explore machine learning as a more efficient and
interpretable alternative.

1) Deep Learning Methods: As a baseline and reference
model for Multivariate Time Series Classification (MTSC),
we implement LSTM and bidirectional LSTM (bi-LSTM)
models. These DL models were selected due to their proven
efficiency in capturing temporal dependencies and complex
sequential patterns in time-series data. They are particularly
effective in identifying intricate patterns in different driving
styles, which is essential for accurately distinguishing between
them. We use these models as a performance baseline to
validate the quality of the “CARLA-Drive” dataset and our
approach. Table [I] shows the architectures of the LSTM and
bi-LSTM baseline models.

TABLE I: DL models architectures. DO stands for DropOut.

Type Metric LST™M bi-LSTM
Neuron units [10,128,64,D0,2] [10,128,64,D0,2]
Binary Kernel initializer =~ Orhtogonal Orhtogonal
Output activation  Softmax Softmax
Neuron units [10,128,64,D0,3]  [10,128,64,D0,3]
3-classes  Kernel initializer ~ Orthogonal Orthogonal
Output activation  Softmax Softmax

2) Machine Learning Methods: Although DL methods de-
liver state-of-the-art performance, their inherent complexity
and computational cost may deter interpretability and practical
applications. To address such issues, we explore the appli-
cation of conventional ML methods to driving style classi-
fication. Specifically, techniques such as Random Forests,
Support Vector Machines, and Gradient Boosting (XG-
Boost) are considered. We show that ML methods offer
comparable performances to that of DL methods but with
lower computational costs. Additionally, these methods not
only enable faster training and inference but also provide
a more transparent mapping from input features to output
predictions. Transparency is essential to gain insight into the
underlying decision process, which forms our basis for further
explainability analyses.

When combined with carefully engineered features, these
methods can effectively capture critical driving behaviors and
patterns. To this end, we designed several feature configu-
rations tailored to extract key insights from our multivariate



time series dataset. Our approach incorporates a diverse set
of statistical transformations, including mean, range, variance,
standard deviation, and first-derivative, as well as event-based
feature transformations. These transformations are used to pro-
vide a more comprehensive representation of driving dynamics
and ensure that both temporal variations and event-driven
changes are effectively captured for improved classification
and recommendation performance.

C. Driver Recommendation

Explainability is a key aspect of our methodology, par-
ticularly as the main objective is to transition from driv-
ing style classification to actionable driver recommendations.
We use the SHAP explainability technique to identify the
most important features in the classification of driving styles.
SHAP for tree ensembles models explainability, or SHAP
TreeExplainer is a technique based on Shapley values from
cooperative game theory, used to explain how individual
features contribute to a model’s predictions. It provides feature
importance scores based on local Shapley values [16]:

sulf0)= Y 1 [R(PFU) - £(PD] )
RER
Where ¢; is the SHAP value for the feature ¢ for a model f
and an instance z, R is the set of all possible permutations
of the features, P is the set of all features that come before
the feature ¢ in a given permutation R, and M is the number
of input features for the model.

The attained interpretability enables us to create a recom-
mendation system that provides personalized and actionable
suggestions to drivers. By identifying the most influential
features that contributed to a driver’s classification into an
aggressive style, the system can generate targeted suggestions
for behavioral adjustments (e.g., reducing excessive braking
or speeding). This end-to-end pipeline, from data set gener-
ation to explainability, ensures that our framework not only
accurately classifies driving styles but also gives actionable
suggestions to improve driver safety and efficiency.

IV. EXPERIMENTS & RESULTS

This section details the experimental setup—models, met-
rics, and visualization tools—and presents the results.

A. Experimental Setup

1) ML models configurations: Multiple feature transforma-
tion configurations were tested throughout our experiments;
however, only three are presented in this paper to illustrate
the performance evolution across the selected configurations.
The first proposed feature transformation configuration, pre-
sented in Table is a standard one, designed to capture
essential statistical properties of the dataset. Specifically, it
aims to summarize key characteristics of the driving style
by computing the mean for distance and speed, ensuring a
representative measure of overall movement. Additionally, the
standard deviation is applied to acceleration and gyroscope
data along the three dimensional axes to quantify variability

TABLE II: Feature transformation configuration n°1

Feature Statistical Transformation
Distance, Speed Mean
Acceleration (x, y, z), Angular Std dev
velocity (x, y, z)
Speed limit First

TABLE III: Feature transformation configuration n°2

Feature Statistical Transformation
Distance, Speed Mean
Acceleration (X, y, z) Variance
Angular velocity (X, y, z) Variance

Event-based feature =-
Overspeed count

Speed limit

TABLE IV: Feature transformation configuration n°3

Feature Statistical Transformation
Distance, Speed Range
Acceleration (X, y, z), Braking (X, y, z) Mean
Angular velocity (x, y, z) Variance

Event-based feature =
Overspeed count

Speed limit

and sudden changes, which are crucial indicators of driving
dynamics. The first occurrence of the speed limit is retained
to preserve the contextual constraint associated with driving
conditions.

The second configuration extends the feature transforma-
tion process by incorporating variance instead of standard
deviation for acceleration and gyroscope data, making the
model more sensitive to extreme variations in movement.
Additionally, an event-based feature is introduced: the over-
speed count, which quantifies the number of instances where
the speed exceeds the prescribed limit. This metric provides
deeper insights into driving behavior by highlighting aggres-
sive or risky patterns, thus improving the model’s ability to
differentiate the aggressive class. Table|lll| provides a summary
of these transformations.

The final configuration focuses on capturing both the dy-
namic range and central tendencies across various features.
The range is computed for distance and speed, while ac-
celeration and braking events across all axes are split into
distinct features, with mean values applied to capture the
overall magnitude of these forces rather than their fluctuations.
The overspeed count remains a key event-based feature, while
variance is retained for gyroscope data to highlight rotational
instability. This configuration is particularly useful for improv-
ing the distinction between the cautious and normal driver
profiles, as their driving patterns are notably similar. Table
summarizes this configuration.

2) DL settings: The key hyperparameters of the DL models
are summarized in Table [V]

3) Performance metrics: The metrics used to evaluate the
performance of our classification models are as follows: ac-
curacy, recall, and F1-score:



TABLE V: DL models hyper-parameters

TABLE VI: Comparison of DL and ML models under two
types of classification.

LSTM bi-LSTM

Batch size 16 16 Classification Type Model Accuracy Recall Fl1-score
Time series window size 600 600 SVM 0.58 0.57 0.54
% of zeros tolerated 90% 90% 3-classes (Config. 1)  XGBoost 0.81 0.81 0.81
Time-series overlap no no RF 0.81 0.81 0.81
Learning rate 0.001 0.001 SVM 0.72 0.72 0.72
Optimizer Adam Adam 3-classes (Config. 2)  XGBoost 0.86 0.86 0.86
Dropout rate 0.3 0.3 RF 0.85 0.85 0.85
Epochs 20 20 SVM 0.71 0.71 0.70
3-classes (Config. 3)  XGBoost 0.92 0.92 0.92
RF 0.92 0.92 0.92
Accuracy = gt 5 Precision = 77 T+ lacson LSTM 079 075 077
Recall = TPZ—% : Fl-score = 2 X %ﬁzgzﬂ bi-LSTM 0.71 0.74 0.64
SVM 0.95 0.95 0.95
Where TP = True Positives, T'N = True Negatives, F'P = XGBoost 0.99 0.99 0.99
False Positives, F'N = False Negatives. Binary Classification RF 0.99 0.99 0.99
4) Explainability visualization: In order to understand the LSTM 0.98 0.98 0.97
impact of each feature on the decision process, we relied bi-LSTM 0.93 0.90 0.91

on two different types of graphs, namely the beeswarm
graph and the waterfall graph. These graphs help interpret
individual and global feature contributions using SHAP values.

e Beeswarm graph: The beeswarm graph provides a com-
prehensive view of feature importance across instances in
the dataset. Each point in the graph represents an indi-
vidual instance, and the color code indicates the value of
the feature. This graph summarizes how the top features
affect the model performance, offering an information-
rich visualization of the impact of the features on the
predictions.

o Waterfall graph: The waterfall graph is used to interpret
how individual characteristics contribute to the prediction
of the model for a single instance by comparing f{x), the
prediction of the selected observation, with a base value
E[f(X)], which is the average prediction across all the
observations for the selected class.

B. Results

1) Classification Results: The classification results for the
three evaluated ML models, tested across the three proposed
statistical transformation configurations, along with the DL
models for both binary and three-class classification, are
summarized in Table [VI} The highest scores for each task are
highlighted in bold. As observed, performance improved for all
three ML models as the configurations evolved. However, both
RF and XGBoost consistently outperformed SVM. In the final
configuration, SVM was significantly outperformed, achieving
an accuracy of only 0.71, compared to 0.92 for both RF and
XGBoost. In the second configuration, the distinction between
the aggressive class (also referred as Class 2) and the other
classes was improved, as reflected in the normalized confusion
matrix of the RF classifier in Figure [2] The latter showed that
the accuracy for Class 2 prediction jumped from 0.88 to 0.95.
Meanwhile, in the third configuration, the main improvement
was in significantly reducing confusion between the cautious
and normal profiles (respectively Class 0 and Class 1), as seen

in the normalized confusion matrix in Figure [2} bringing the
overall accuracy of the RF model from 0.85 in the previous
configuration to 0.92. Regarding DL methods, the LSTM
model achieved an accuracy of 0.98 in the binary classification
task, comparable to the best-performing ML models. However,
it was outperformed in the three-class classification task by
the RF and XGBoost classifiers across all configurations, with
its accuracy score of 0.79. Additionally, the LSTM model
consistently outperformed the bi-LSTM model across both
classification tasks, indicating a better suitability.

2) Explainability Results: The beeswarm graphs in Figure 3]
provide information on how different characteristics contribute
to the predictions of the model in different classes. Notably,
speed, overspeed_count, distance, and brake_x emerge as
key contributors, as indicated by their high SHAP values
across all classes. However, feature importance varies between
classes. For instance, overspeed_count appears to exert a
greater influence in Class 2 compared to the others.

The observed feature contributions align with logical expec-
tations. A higher overspeed count strongly correlates with an
aggressive driving profile, while greater ranges of distances left
between the vehicle and obstacles also reflect this tendency.
On the other hand, lower mean braking intensity increases the
likelihood of classification as a cautious driving style, as a
driver classified as cautious is expected to avoid sudden or
harsh braking, leading to a lower mean braking intensity.

Finally, to provide tailored recommendations, we selected
two instances of “aggressive” driving data to analyze the most
influential features in each classification decision using the
SHAP TreeExplainer. By examining the resulting waterfall
graphs, we aimed to uncover the key driving behaviors that
contributed to their classification, offering insights into the
features that had the greatest impact on the model’s decision-
making process.

For the first observation, the waterfall graph for Class 2
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in Figure [] highlights three primary features that contributed
to the classification decision: overspeed_count, speed, and
distance. These factors indicate that the driver exceeded speed
limits, exhibited significant speed fluctuations, and at times
maintained insufficient distance from other vehicles, which can
be indicative of aggressive driving behavior.

Based on these findings, the following recommendations can
be provided to drivers:

o Adhere to speed limits to reduce the risk of aggressive
driving classifications.

o Maintain a consistent speed to promote smoother and
safer driving behavior.

o Keep a safe following distance to avoid collisions.

The waterfall graph for the aggressive class for the second
selected observation in Figure [5] highlights four primary fea-
tures that contributed to the classification decision: distance,
brake_x, speed, and accel_x. These factors suggest that the
driver maintained inconsistent distances from other vehicles,
applied abrupt braking, exhibited variations in speed, and
experienced high longitudinal acceleration, all of which are
indicative of aggressive driving patterns.

Based on these findings, the following recommendations can
be provided to drivers:

e Maintain a safe and consistent following distance to
reduce sudden braking and collision risks.

o Apply braking smoothly to ensure better vehicle control
and passenger comfort.

o Regulate speed variations
stable driving behavior.
o Limit excessive acceleration to enhance driving stability.

to promote safer and more

V. DISCUSSION

The results show that ML methods perform better in spe-
cific scenarios, especially with the effective feature engineer-
ing we employ. Feature transformations significantly impact
model performance by capturing key dynamics and enhancing
driver profile differentiation. In addition, the results show that
the LSTM models consistently outperformed the bi-LSTMs,
adding complexity without notable gains. Despite their general
strengths in bidirectional tasks, bi-LSTMs proved less effective
for this application, highlighting the advantage of simpler
sequential models.

Moreover, ML methods offer strong computational ef-
ficiency, making them well-suited for real-time, in-vehicle
deployment. Their interpretability—boosted by SHAP—also
supports actionable, personalized recommendations, aligning
well with the needs of ADAS, where trustworthy Al is critical.

VI. CONCLUSION

In this work, we proposed an XAl-driven machine learning
system for driving style recognition and personalized recom-
mendations. By leveraging the CARLA simulator, we gener-
ated a dataset that classified driving styles into three categories:
cautious, normal, and aggressive. Our experiments showed
that machine learning models, when combined with effec-
tive feature engineering, outperformed deep learning models,
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achieving a best accuracy score of 0.92 with RF classifiers.
Furthermore, the application of SHAP to RF models provided
valuable interpretability, enabling us to generate meaningful
recommendations based on driving style predictions. As future
perspectives, we aim to enrich the dataset by incorporating
a greater diversity of driving styles characteristics, ensuring
a broader scope for the recommendation system part of our
approach. Additionally, collecting data from real drivers within
CARLA would provide a more realistic and varied dataset.
Finally, testing our approach on larger, publicly available,
real-world datasets would allow for a more comprehensive
evaluation of its effectiveness and generalization capabilities.
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