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Abstract—The Internet of Electric Vehicles (IoEV) envisions
a tightly coupled ecosystem of electric vehicles (EVs), charging
infrastructure, and grid services, yet remains vulnerable to cyber-
attacks, unreliable battery-state predictions, and opaque decision
processes that erode trust and performance. To address these
challenges, we introduce a novel Agentic Artificial Intelligence
(AAI) framework tailored for IoEV, where specialized agents
collaborate to deliver autonomous threat mitigation, robust ana-
lytics, and interpretable decision support. Specifically, we design
an AAI architecture comprising dedicated agents for cyber-threat
detection and response at charging stations, real-time State of
Charge (SoC) estimation, and State of Health (SoH) anomaly
detection, all coordinated through a shared, explainable reason-
ing layer; develop interpretable threat-mitigation mechanisms
that proactively identify and neutralize attacks on both physical
charging points and learning components; propose resilient SoC
and SoH models that leverage continuous and adversarial-
aware learning to produce accurate, uncertainty-aware forecasts
with human-readable explanations; and implement a three-agent
pipeline, where each agent uses LLM-driven reasoning and dy-
namic tool invocation to interpret intent, contextualize tasks, and
execute formal optimizations for user-centric assistance. Finally,
we validate our framework through comprehensive experiments
across diverse IoEV scenarios, demonstrating significant improve-
ments in security and prediction accuracy. All datasets, models,
and code will be released publicly.

Index Terms—Agentic Al IoEV, Cyber-Physical Threats, SoC
Estimation, SoH Monitoring, Explainability, Multi-Agent Sys-
tems.
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I. INTRODUCTION

HE Internet of Electric Vehicles (IoEV) envisions a fu-

ture in which electric vehicles (EVs) interact seamlessly
with one another, with charging infrastructure, and with grid
services through connected, data-driven systems. This vision is
fueled by the ongoing modernization and globalization of the
transportation sector, where EVs play a pivotal role in promot-
ing greener and more sustainable mobility solutions. As adop-
tion grows, intelligent services such as State of Charge (SoC)
estimation, State of Health (SoH) monitoring, and predictive
maintenance are becoming increasingly essential for achieving
energy efficiency, operational safety, and long-term reliability
[1]], [2—drawing considerable attention from both industry

and academia. In particular, accurate assessment of SoC and
SoH is crucial, as these parameters directly influence battery
utilization, driving range, and overall vehicle performance.
SoC indicates the current charge level and guides decisions
related to charging schedules and trip planning, while SoH
reflects the battery’s degradation, aging, and performance,
offering key insights for lifespan estimation and maintenance
planning [3].

At the same time, the IoEV paradigm introduces broader
system-level concerns, particularly the need for a secure and
resilient charging infrastructure that can function reliably in
dynamic and potentially adversarial environments. The very
connectivity that enables intelligent services also expands the
system’s attack surface, increasing its vulnerability to cyber
threats and unpredictable operational disruptions [4]. As a
result, IoEV systems must contend with multidimensional
challenges that undermine their reliability, safety, and trust.
Among these, charging stations (CSs) are frequent targets
for cyberattacks such as distributed denial-of-service (DDoS)
or node compromise, which can disrupt grid coordination,
reduce service availability, and impair system-wide responsive-
ness [5]. In parallel, the accuracy of SoC and SoH predictions
can deteriorate due to data heterogeneity, sensor failures, or
adversarial inputs— leading to flawed assessments that com-
promise both safety and range estimation [3]. Furthermore,
the increasing complexity of IoEV environments gives rise to
human-in-the-loop concerns, where oversight is often reactive,
opaque, or inadequately informed—partly due to the black-
box nature of many learning-based models. These limitations
underscore the need for autonomous and explainable solutions
that can adapt to evolving threats, produce reliable predictions,
and deliver transparent reasoning that can be understood by
both machines and human operators.

To this end, we propose leveraging Agentic Artificial
Intelligence (AAI), a class of Al systems capable of au-
tonomous decision-making, contextual reasoning, and goal-
directed adaptation. Agentic Al frameworks are well-suited for
dynamic settings like IoEV, where agents must operate under
uncertainty, interact with potentially compromised peers, and
pursue long-term safety and efficiency objectives [6]. When
augmented with explainability, Agentic Al not only enhances
trust and accountability but also enables actionable insights
for system operators and end users, bridging the gap between
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automation and human comprehension [7].

Beyond battery diagnostics and infrastructure security, our
framework introduces a user-centric dimension to IoEV in-
telligence by deploying specialized agents designed to as-
sist drivers with personalized, context-aware services. These
agents respond to natural language requests and translate them
into tractable optimization tasks, enabling real-time adaptation
to evolving needs. For instance, a driver might request: “Make
sure I have enough charge to attend a late-night event and
still commute to work tomorrow”, prompting the system to
coordinate a charging plan that balances time constraints, bat-
tery wear, and grid conditions. Leveraging the reasoning and
coordination capabilities of large language models (LLMs),
these agents handle a variety of tasks—including scheduling,
prioritization, and decision support—tailored to both indi-
vidual user preferences and broader system objectives. This
design fosters a more natural and effective human-machine
interaction model, allowing the IoEV ecosystem to shift away
from rigid scheduling schemes toward adaptive and intuitive
assistance.

This work proposes a novel Agentic IoEV Intelligence
framework that leverages Agentic Al with specialized agents
and dynamic analytics tools to address cybersecurity and
battery management challenges in the IoEV. Our key contri-
butions are:

« We propose an Agentic Al architecture for IoEV, centered
on a shared, explainable reasoning layer that enables co-
ordination among autonomous agents, supporting secure,
reliable, and interpretable electric mobility operations.

« We develop explainable threat mitigation mechanisms to
detect and respond to cyberattacks on charging stations,
enhancing IoEV security. Additionally, we propose robust
SoC estimation and SoH anomaly detection models with
interpretable outputs, supporting proactive maintenance
and system reliability. Finally, we design a three-agent
pipeline for user-centric support, where each agent lever-
ages LLM-driven reasoning and dynamic tool invocation
to interpret intent, contextualize tasks, and execute formal
optimizations for user-centric assistance.

« We conduct comprehensive experiments to evaluate and
validate the framework across diverse IoEV scenarios,
providing insights into Agentic Al performance.

The rest of the paper is organized as follows: Section
reviews related work on AI for IoEV. Section outlines
the research questions and proposed Agentic Al framework.
Section details the experimental evaluation and results.
Finally, Section |V]| concludes the paper and discusses future
directions.

II. BACKGROUND & RELATED WORK

This section reviews key developments across four do-
mains relevant to Intelligent and Secure IoEV: SoC estimation,
SoH and anomaly detection, cybersecurity, and agentic Al

A. SoC Estimation

Modern SoC estimation combines classical filtering with
data-driven models. Model-based Kalman filters (KF), in-
cluding extended and unscented variants (EKF/UKF), remain
widely used for real-time SoC tracking using physics-based
battery models [1]], but require accurate parameter identifi-
cation. Pure machine learning (ML) approaches (e.g., deep
neural networks (DNNSs), long short-term memory (LSTM)
and gated recurrent unit (GRU) networks) [3[] are also explored
to learn nonlinear battery dynamics from data. Recently,
hybrid KF-neural schemes have shown very high accuracy.
For example, Liu & Dun [8] propose a Dynamic Genetic
Kalman Neural Network (DGKNN) that integrates an EKF
with a neural net (optimized by a genetic algorithm); this
hybrid achieved 0.15% SoC prediction error on test data.
These hybrids leverage the theoretical reliability of Kalman
filtering and the flexibility of learning models to improve real-
time SoC monitoring.

B. SoH Prediction

SoH prediction (tracking battery aging and capacity) and
fault detection have likewise advanced through ML applied
to large datasets. A recent study analyzes real-world EV data
from 300 vehicles over three years and demonstrates that a
deep, multi-modal neural framework can accurately predict
battery SoH [9]. In practice, ML-based anomaly detection is
used to flag unusual degradation or fault patterns. For example,
Cao et al. [2] develop a deep-learning (DL)-based battery fault
diagnosis network that leverages data from 515 EVs. This
model significantly improved the true-positive detection rate
of safety-critical faults (e.g., electrolyte leaks, internal shorts)
by 46.5% over previous methods. In summary, data-driven
SoH estimators and anomaly detectors use EV operational
signals (e.g., voltage, current, temperature) in neural models
to identify irregular aging or sensor behavior, yielding both
theoretical advances and validated real-world results [2], [9].
DL-based SoH estimation frameworks—often using convolu-
tional neural networks (CNNSs) or recurrent neural networks
(RNNs)—can learn to predict remaining capacity or degrada-
tion trends. For instance, Liu et al. 9] utilize historical vehicle
data in a multi-modal DL architecture to achieve efficient and
accurate SoH estimation.

C. Cyber Threat Detection

ML techniques are increasingly used for intrusion and
anomaly detection in EV-related networks. Two emerging do-
mains are EV charging infrastructure—commonly referred to
as electric vehicle charging stations (EVCS)—and in-vehicle
networks such as the controller area network (CAN) bus.

e EVCS Intrusion Detection Systems (IDS): Charging
stations form an Internet of Things (IoT) ecosystem
with standardized communication protocols (e.g., Open
Charge Point Protocol (OCPP)) and are vulnerable to
cyber-physical attacks. Researchers have applied DNNs
with transfer learning (TL) to this problem. For example,
Khan et al. [5] train a DNN on a large EVCS attack



dataset and then fine-tune it for specific sites. This TL-
based detector achieved 98% accuracy on a public EVCS
intrusion dataset. In effect, the model leverages pretrained
weights to quickly adapt to new EVCS environments and
detect diverse attacks. This work shows that DL-based
IDS can significantly outperform traditional signature-
based IDS for charging stations by capturing complex
and evolving threat patterns.

o In-Vehicle (CAN Bus) IDS: The vehicle’s CAN bus lacks
built-in security, making it a key target. Rai et al. [10]
demonstrate that modern DL architectures (LSTM, GRU,
CNN) can effectively detect CAN-bus intrusions. Using
public CAN attack datasets, they report 99-100% ac-
curacy in detecting both denial-of-service and spoofing
attacks. This study highlights that goal-driven neural
agents can analyze the spatio-temporal structure of CAN
messages (via bi-directional LSTM (BiLSTM) and CNN
models) to catch anomalies that legacy methods miss.

D. Agentic AI & IoEV

AAI refers to autonomous, goal-directed Al agents that
can plan, adapt, and act with minimal human intervention.
In robotics [[11], mission-critical applications supported by
5G/6G networks [7], and smart grids [[12]], recent work has
leveraged such agents (often via reinforcement learning, multi-
agent systems, etc.) to achieve autonomous control.

Agentic Al could enhance both battery management and
cybersecurity in IoEVs. For instance, an autonomous agent
could continuously adapt its SoC/SoH estimation or charging
strategy based on driving patterns and grid conditions, effec-
tively optimizing battery life without manual retuning. Like-
wise, goal-driven agents could monitor vehicle networks and
detect intrusions in real time, or even enact countermeasures.
Although IoEV-specific agentic systems are still emerging, the
successes in robotics (multi-robot with safety guarantees) and
energy management suggest strong potential. In short, integrat-
ing agentic autonomy into EV systems could enable vehicles
to self-manage health and security in a dynamic environment,
building on the DL-based IDS and battery management system
(BMS) advances noted above.

III. METHODOLOGY

This section outlines the proposed methodology for intel-
ligent and autonomous IoEV systems. We begin by defining
the core problem: jointly estimating battery SoC and SoH
while detecting cyber threats and supporting end users under
real-world uncertainties. To address this, we introduce a five-
layer system architecture that supports distributed sensing,
computation and decision-making. We then detail the agentic
workflow, wherein autonomous agents continuously monitor
battery conditions, detect faults and intrusions, and adaptively
support end users.

A. Problem Statement

The increasing connectivity of IoEV introduces signif-
icant cybersecurity risks (e.g., DDoS attacks on charging

stations) and challenges in reliable battery management (e.g.,
accurate SoC estimation and SoH anomaly detection). A
critical question arises: can Agentic Al with specialized agents
and dynamic analytics provide autonomous, explainable, and
robust solutions for these challenges? This paper investigates
this problem through the following research questions:

« RQIl: Can Agentic Al accurately detect and mitigate
cyberattacks on IoEV charging stations with explainable
mechanisms?

¢ RQ2: Can Agentic Al provide robust and interpretable
SoC/SoH estimations prioritizing critical degradation pat-
terns with interpretable outputs?

« RQ3: How does the integration of specialized agents and
dynamic analytics enhance the adaptability and perfor-
mance of Agentic Al in dynamic IoEV environments?

B. Layered Architecture

The Agentic IoEV framework combines specialized
agents, real-time analytics, and explainable Al within a five-
layered architecture that leverages edge computing and 5G
connectivity for secure and intelligent decision-making. The
design depicted in Figure [I] ensures modularity, scalability,
and seamless integration of agents, data analytics pipelines,
and explainability tools in the IoEV environment. The core
functional roles of the layers are outlined below:

o IoEV Layer: Aggregates vehicle and charging station
data (e.g., voltage, temperature, traffic) to support battery
diagnostics and cyber threat detection.

o Network Layer: Utilizes 5G and Software-Defined
Networking (SDN) [13] to ensure low-latency, high-
reliability communication for real-time monitoring and
response.

o Edge Computing Layer: Hosts autonomous agents and
supports distributed, low-latency inference [14], along
with continual learning approaches—such as federated,
transfer, and split learning—that enable models to adapt
incrementally and privately to new data while retaining
previously learned knowledge.

o Agentic Al Layer: Deploys task-specific agents for cy-
bersecurity, SOC/SoH analytics, and user-centric services
using context-aware, explainable reasoning.

o Application Layer: Interfaces with users and operators,
providing transparency, feedback, and adaptive control
through real-time insights, decision oversight and ma-
chine learning operations (ML Ops) integration.

C. Privacy and Secure Data Handling in Agentic IoEV

The Agentic Al framework processes sensitive
data—including CAN bus telemetry, calendar-based intent
inputs, and charging station traffic—for personalized
optimization and threat detection. To protect user privacy
and ensure secure edge-based inference, we implement the
following safeguards:

o Secure Transmission of CAN and Network Data:All
telemetry is encrypted using Transport Layer Security
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Fig. 1: System Architecture — The Agentic IoEV framework adopts a five-layered design comprising the IoEV Layer (data collection from
vehicles and charging stations), Network Layer (5G and SDN connectivity), Edge Computing Layer (distributed inference and continual
learning), Agentic Al Layer (task-specific intelligent agents), and Application Layer (user interaction and ML Ops).

(TLS) with mutual authentication and ephemeral session
keys to prevent replay or correlation attacks.

« Minimal Data Retention Policy: Raw data is processed
in-session and discarded unless user consent is given for
storage.

« Agent Isolation and Data Access Scoping: Agents
operate under strict task-specific scopes (e.g., the Con-
textualizer Agent accesses calendar data, while the Safety
Agent handles logs), with fusion only under explicit
coordination.

o Federated Learning with Differential Privacy: To
improve task-specific ML models (e.g., SoH predictors,
threat classifiers) while safeguarding raw user data, we
employ federated learning. Agents contribute encrypted
local updates; differentially private noise is applied during
aggregation to protect against inference or model inver-
sion attacks.

These mechanisms collectively ensure that sensitive
data—ranging from vehicle diagnostics and user schedules
to charging station logs—is processed securely at the edge,
without unnecessary retention, or exposure beyond the agent’s
authorized scope.

D. In-depth Agentic workflow

The Agentic Al Layer operates as a distributed, tool-
augmented, and explainable multi-agent system. Each agent
within this layer is tailored to handle a specific class of
tasks, interfacing with specialized tools, continuously updated
models, and explainability components to deliver actionable,
human-understandable decisions. The end-to-end workflow
begins at user interface level—whether in the EV or the
CS—and progresses through intelligent modules designed for
perception, communication, and decision-making.

1) Embedded Intent Recognizer and Perception: At the
EV or charging station level, an Embedded Intent Recog-
nizer—implemented as a compact language model suitable
for deployment in resource-constrained environments, such as
microcontrollers within EVs monitoring the CAN bus or local
control hardware in charging stations—interprets user queries
and system events by identifying their underlying intent. This
may include a driver’s request for battery diagnostics or a
system-initiated alert related to anomalies in the charging
stations. Upon recognizing the intent, the Perception Module
gathers real-time sensor data relevant to the corresponding task
and transmits it to the edge infrastructure hosting the Agentic
Al components via a high-throughput network.

2) Task-Oriented Agentic Routing: Following the percep-
tion phase, the system routes data into two main pathways



depending on the recognized intent:

« Safety and Security Agent (SSA): The SSA is a domain-
specialized LLM augmented with Retrieval-Augmented
Generation (RAG) [15]], which contains relevant domain-
specific documents, and integrated tools for real-time di-
agnostics, threat analysis, and explainability mechanisms.
Upon identifying a safety or security-related request, the
SSA acts as a reasoning layer that interprets intent, coor-
dinates tools, and delivers clear, context-aware responses to
end users in the following manner:

a. Invocation of Diagnostic Tools: The agent dynamically
selects and invokes the appropriate tool based on the
recognized intent: (i) EV Battery Safety Tool, which
is a multi-task pre-trained model designed for real-
time inference of the SoH and SoC of EV batteries;
(ii) Charging Station Security Tool, which utilizes pre-
trained anomaly and intrusion detection models to iden-
tify potential security breaches or malicious activities.

b. Explainability Tool: After performing diagnostics or
threat assessments, the SSA engages an explainability
tool—such as SHapley Additive exPlanations (SHAP)
or Local Interpretable Model-agnostic Explanations
(LIME)—to interpret the results and highlight the key
features that most influenced the output. This reveals
the underlying factors contributing to degradation or
security threats, enabling causal interpretability and pro-
viding transparent reasoning about abnormal system
behaviors.

c. Response Generation: The SSA consolidates the results
into a user-friendly explanation, ensuring that technical
assessments are conveyed in an accessible manner for
vehicle users or charging station operators, and provid-
ing clear, intuitive responses that are both informative
and easily understandable.

Through the orchestration of specialized diagnostic tools,
explainability techniques, and agents’ capabilities, the SSA
provides accurate, interpretable, and user-friendly responses
in critical safety and security scenarios.

Multi-Agent Coordination and Support: When a user
issues a high-level, intent-rich request, the system initiates a
three-agent pipeline designed to interpret, contextualize, and
solve the task through a combination of LLM-driven reason-
ing and formal optimization methods. This route consists of
the Personalized Support Agent (PSA), the Contextualizer
Agent (CA), and the Solver Agent (SA). The roles and
functions of these agents are as follows:

— Personalized Support Agent: Responsible for translat-
ing a user’s natural language request into a formalized
optimization problem skeleton and identifying the specific
parameters required to instantiate it. The PSA’s first task
is to determine the underlying optimization problem type
based on the user’s intent. This is accomplished by lever-
aging the generalization capabilities of an LLM, which
maps a free-form user request to one of several predefined
optimization problem types. For instance, the request “I

want to charge my EV tomorrow on my way back home
as cheaply as possible” would be interpreted as a cost-
minimization problem under spatiotemporal constraints,
matching a template such as a multi-objective constrained
optimization. Once the problem type is identified, the PSA
proceeds to the second task: extracting and categorizing
the parameters needed to instantiate the problem. These
parameters define the optimization variables, constraints,
and objectives, and are organized into two categories:
Type 1 - Explicitly stated parameters: Elements directly
mentioned in the request, such as “tomorrow” (temporal
constraint) or “cheap” (cost minimization objective).
Type 2 - Physical system parameters: Inherent properties
of the user’s environment or devices necessary for opti-
mization but not typically restated in each request — for
example, the electric vehicle’s battery capacity, charging
rate, or energy consumption profile. The PSA outputs the
abstract problem skeleton—a symbolic representation of
the optimization structure—along with a list of unresolved
parameters and their categories. While this representation
is not directly solvable, it provides a structured starting
point for subsequent contextual grounding and numerical
resolution.

Contextualizer Agent: Responsible for bridging the gap
between symbolic user intent and grounded, data-driven
values. It receives the abstract optimization skeleton
(AOS) produced by the PSA and enriches it by mapping
unresolved symbolic parameters to contextually relevant
values. The CA is implemented as an LLM augmented
with pretrained deep learning models specialized in fore-
casting electricity prices, estimating charging station de-
mand and occupancy, and predicting user behavior pat-
terns such as likely return times. These predictions are
inferred from user-provided calendar data and historical
mobility patterns. To preserve privacy, the CA accesses
this data only during active sessions, processes it tran-
siently at the edge, and discards or anonymizes it imme-
diately after use—unless explicit, user-granted retention
is required for personalization. Access is strictly scoped,
and all identifiers are pseudonymized prior to analysis.
This ensures compliance with the system’s minimal data
retention and data scoping policies. The CA grounds the
abstract formulation with these context-sensitive parame-
ters, producing a fully instantiated optimization problem
ready for computational resolution.

Solver Agent: Responsible for solving the fully grounded
optimization problem delivered by the CA. It uses an
LLM combined with a set of external numerical solvers,
each specialized for a specific type of optimization
problem. Instead of relying only on LLM-generated
solutions—which can be approximate and may violate
important constraints—the SA uses well-tested solvers
for accurate results. Since the PSA has already iden-
tified the problem type (such as linear programming,
quadratic programming, or mixed-integer optimization),
the SA directly selects the appropriate solver from its



collection. This collection includes tools from libraries
like scipy.optimize, cvxpy, and control. Using
these proven algorithms ensures that strict physical and
quality-of-service (QoS) constraints are respected.

IV. EVALUATION & RESULTS

This section presents the experiments we conducted to
validate the proposed AAI framework for [oEV.

A. Experimental Setup

1) Datasets and Models: We evaluated several ML/DL
models on three distinct tasks using real-world datasets. The
first task addressed multitask learning, involving the classifi-
cation of SoH and the estimation of SoC using the EVBattery
dataset [16]. This dataset comprises large-scale time-series
charging data, segmented into 128-step sequences using a slid-
ing window, with each snippet containing features such as cell
voltage statistics, charging current, temperature, SoC values,
and timestamps. The second task focused on detecting cyber-
attacks using the CICEVSE2024 dataset [17]], which captures
network traffic from EVCS under benign conditions as well
as during reconnaissance and denial-of-service
attacks. The raw pcap files were processed using NFStream. To
mitigate potential bias, features related to timestamps, Media
Access Control (MAC) addresses and Internet Protocol (IP)
addresses were removed, and redundant attributes were filtered
out based on correlation analysis. The third task involved
forecasting EV charging demand in urban environments using
the UrbanEV dataset [18[]. This dataset includes charging
data such as occupancy, duration, and volume, as well as
environmental context like weather conditions. Additionally,
it incorporates spatial features like adjacency matrices and
distances, along with static attributes such as Points of Interest,
area size, and road length. Details of the models used and their
respective architectures are given in Table

2) Evaluation Metrics: We assess the performance of SoH
prediction and EVCS attack detection using accuracy, preci-
sion, recall, and F1-score:

_ ___ TPYTN
ACCUracy = Fp 7Ny FPIFN
.: TP _ TP
Precision = TPLFP and Recall = TPIEN

— Precision X Recall
F1-Score = 2 x Precision+Recall

For the SoC estimation and EV/EVCS forecasting tasks, we
use the mean absolute error (MAE), the mean squared error
(MSE), and the root mean squared error (RMSE):

MAE = § 5500 lyi — i
MSE = £ 5% (y; — 9:)? and RMSE = vMSE

3) Training Configuration: We perform experiments on
three NVIDIA H100 GPUs, repeating each experiment at least
3 times and averaging the results. The default settings for
training our models are given in the Appendix [V] (Table [V).
The agents are implemented in Python using the LangChain
library. For the base model, we use LLaMA2-7B, LLaMA2-
13B, and LLaMA-8B, as they are open-source and can be run
locally with relatively affordable computational resources. To
eliminate randomness, the model temperature is set to O.

B. Intent Recognition

We benchmarked our Embedded Intent Recognizer using a
synthetic dataset consisting of EV battery diagnostics (class
2), charging station intrusion identification (class 1), and user-
centric queries (class 0). A lightweight, fine-tuned Distil-
BERT achieved performance comparable to larger models
like DeBERTa and RoBERTa (as illustrated in the confusion
matrices in Figure [2)), excelling at text classification and of-
fering faster inference with significantly lower computational
overhead. This makes DistilBERT an ideal choice for resource-
constrained environments such as EVs and CSs.

C. Safety and Security
TABLE I: Performance Comparison of Models for EV Battery

State Diagnosis and EVCS Attack Detection: IT: Inference
Time and MS: Model Size.

Task Subtask Metric Model 1 Model 2 Model 3

MS (KB) 84.74 95.34 76.23

SoH IT (Ms) 0.2885 0.324 0.2595

(Anomaly) Accuracy 96.12%  96.62% 94.2%

Battery Prediction Recall 93.38% 93.95% 91.30%
State Fl-score  94.69%  95.37% 92.2%
Diagnosis SoC MAE 0.4625 0.4518 0.4754
(Capacity) MSE 0.6694  0.6462  0.6706

Estimation RMSE 0.8182 0.8039 0.8189

MS(KB) 454 209.5 215

S My 3017 1815 0214
Detection Accuracy  98.12% 99.3% 98.62%
F1-score 98% 99.33%  98.23%

1) ML/DL Models Performance: All models were trained
and evaluated on the preprocessed datasets, and their perfor-
mance metrics for both tasks are summarized in Table [l For
battery state diagnosis, Model 1 (LSTM), Model 2 (BiLSTM),
and Model 3 (GRU) all achieve high performance with low
inference time and compact sizes. Similarly, for EVCS attack
detection, Model 1 (multi-layer perceptron, MLP), Model 2
(LSTM), and Model 3 (extreme gradient boosting, XGBoost)
deliver strong results across all metrics. Evaluating three dis-
tinct models per task enables a robust comparison of learning
architectures in terms of accuracy, efficiency, and deployment
feasibility. Confusion matrices for both classification tasks are
provided in Appendix [V]for additional insight into class-level
performance (Figure [3]for battery state of health diagnosis and
Figure [ for EVCS attack detection).

2) Explainability and Human-Centered Interpretation: To
enhance transparency and provide interpretable insights for
end-users (such as EV drivers and EVCS operators), we incor-
porated explainability techniques into the outputs of trained
ML models using SHAP [19], a robust tool that calculates
the contribution of each feature to the model’s prediction,
offering a clear understanding of how individual inputs in-
fluence the outcome (see Figure [5] in the Appendix [V] for
the SHAP summary plot highlighting the features contributing
to the classification of an EVCS DoS attack). For each
output—whether identifying operational factors leading to EV
battery anomalies or detecting security intrusions in the EVCS
network—an LLM, enriched with SHAP-derived information,
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Fig. 2: Confusion Matrices for Intent Recognition

was carefully prompted to generate role-specific explanations
(See the prompt for EV battery anomaly interpretability in
Figure [6] and the prompts for EVCS attacks interpretability in
Figure [7]in the appendix [V), ranging from alert messages for
drivers regarding battery degradation to incident summaries for
EVCS operators. By reasoning through the SHAP outputs, the
LLM provided human-understandable explanations tailored
to the needs of different stakeholders, ensuring clarity and
actionable insights while minimizing reliance on expert or
domain-specific knowledge and intervention.

TABLE II: Accuracy-based BARTScore Comparison of SSA’s
Responses using LLaMA Models

Task LLaMA 7B LLaMA 13B LLaMA3 8B
EV Battery Checkup 0.84 0.87 0.95
EVCS Attacks 0.86 0.89 0.93

3) SSAs Explainability Performance: To assess the inter-
pretative capability of the LLM used as SSA, we conducted
a two-part evaluation corresponding to each task. From the
EVBattery [16] and CICEVSE2024 [17] datasets, we ex-
tracted 100 random samples each, processed them through
the trained ML models, and applied SHAP to highlight the
most influential input features. These SHAP-based insights
were then transformed into natural language prompts designed
for GPT-4, simulating realistic queries from end-users such as
EV drivers or EVCS operators. The generated explanations
were subsequently annotated and verified by domain experts,
who assessed the correctness, clarity, and relevance of each
explanation. The evaluation showed that 98% of the responses
were judged to be accurate and meaningful, indicating that
the GPT-4 can provide high-fidelity, expert-like interpretations
and may be considered as ground truth references for eval-
uating our deployed models, specifically, prompt-engineered
LLaMA2-7B, LLaMA2-13B and LLaMA3-8B models. We
prioritized these smaller models not merely due to hardware
constraints, but to ensure lower energy consumption, and cost-
effective scalability across multiple edge servers. Each agent
was prompted with the same input, and its generated re-
sponses were compared with expert-verified GPT-4 references

using BARTScore to assess linguistic quality and semantic
similarity [20]]. Prior to adopting BARTScore for large-scale
evaluation, we validated its reliability by comparing its outputs
with expert human judgments. Domain experts assessed each
response to determine its alignment with the ground truth.
Then these expert evaluations were compared with automated
BARTScore evaluations, which resulted in a strong correlation
of 0.91. This confirmed BARTScore’s ability to reflect expert
evaluations accurately, thereby justifying its use for systematic
quality assessment. This approach ensured that the automatic
review mirrored the expert assessments, offering confidence
that BARTScore can be reliably used for quantifying the qual-
ity of LLM-generated responses. In addition, exact match rates
were calculated to quantify accuracy in reproducing the core
content of the reference. As illustrated in Table[[T} the LLaMA
7B, 13B, and 3 8B models demonstrated strong performance
on both tasks, achieving accuracies of 0.84, 0.87, and 0.948
for the EV Battery Checkup task, and 0.86, 0.89, and 0.93 for
the EVCS Attacks task, respectively. These results highlight
that effective prompt engineering, without the need for costly
fine-tuning, can lead to high-quality results. This evaluation
allowed us to gauge how well smaller and more recent LLMs
can produce faithful and informative explanations, using GPT-
4 outputs as a reliable expert-level reference.

D. User Support

TABLE III: Evaluation of PSA Performance

Task
AOS Extraction

LLaMA 7B LLaMA 13B LLaMA3 8B
0.80 0.84 0.91

We benchmarked the coordination and support capabil-
ities of our multi-agent system by evaluating the two core
agents individually: the PSA and the CA. The focus is placed
on these two agents, as the third agent, the SA, merely
maps the finalized problem and its instantiated parameters to
external python solvers tailored for optimization tasks and does
not contribute to the reasoning or abstraction processes that are
central to our evaluation.



The PSA translates end-user assistance requests into for-
mal optimization problem types and identifies the parameters
required to instantiate them. To assess its performance, we
created a synthetic dataset comprising diverse user-centric
queries related to charging optimization across a range of real-
world scenarios and constraints. These prompts were passed to
GPT-4, which generated corresponding optimization problem
types along with their skeletons, including parameters and con-
straints. The outputs were manually reviewed and annotated
based on their correctness, relevance, and alignment with the
prompt’s intent. Only those deemed accurate and suitable were
retained as ground truths, resulting in an accuracy of 97.2%
This process demonstrates that GPT-4 can effectively serve
as a ground truth generator for this task. Subsequently, the
same prompts were given to prompt-engineered LLaMA-7B,
13B, and 3 8B models, which are lighter-weight alternatives
to GPT-4, to evaluate their ability to extract AOS from user
intents. The generated outputs were compared to the GPT-4-
based ground truths using an automatic evaluation procedure,
where we employed DeepSeek [21] as the judge model. Its
role was to assess whether the candidate outputs matched the
ground truth in terms of both structure and semantic alignment.
We opted to use DeepSeek as the judge model instead of
automated scoring metrics such as BARTScore, as the task of
extracting an optimization skeleton from user intent requires
contextual reasoning and structural understanding, which are
beyond the capabilities of token-level similarity measures.
The resulting accuracies, reported in Table [[TI] indicate that
while LLaMA-13B outperformed LLaMA-7B, LLaMA 3 8B
achieved the best performance with an accuracy of 0.91. These
findings suggest that more recent LLMs, even without domain-
specific fine-tuning, can effectively approximate expert-level
reasoning. However, further improvements may be possible
through targeted adaptation, which we leave to future work.

For the CA, which determines whether real-world con-
textual information is needed and maps abstract optimization
parameters to real-life practical, contextually relevant values,
we augmented the LLM with external urban EV/EVCS-related
tools. These tools include components for forecasting electric-
ity prices, estimating charging station demand and occupancy,
and predicting user behavior patterns, such as expected return
times inferred from calendar data or mobility habits. The agent
invokes these tools only when real-life grounding is required.
The forecasting components rely on a pre-trained LSTM
model, which estimates charging station demand, occupancy,
duration, volume, and electricity prices. For this case study,
occupancy, demand, and volume were forecasted based on
six time measurements. Table provides the RMSE and
MAE for the forecasting components, which demonstrate good
prediction performance, though the error values differ due to
the varying scales of the data being forecasted.

V. CONCLUSION AND FUTURE WORK

In this work, we presented a novel Agentic Al framework
that empowers the Internet of Electric Vehicles with au-
tonomous cyber-threat defense, robust battery-state analytics,

TABLE IV: Forecasting model performance for different com-
ponents

Forecasting Component RMSE MAE
Charging Station Occupancy 0.09 0.075
Charging Duration 3.02 2.17
Charging Volume 42.17 35.17

and transparent decision support. By decomposing responsibil-
ities across specialized agents—for threat mitigation, SoC esti-
mation, and SoH anomaly detection—and unifying them under
an explainable reasoning layer, our approach demonstrably
enhances security, prediction accuracy, and stakeholder trust.
Extensive evaluations across varied IoEV scenarios confirm
substantial improvements over non-agentic methods. Future
research will explore dynamic agent collaboration strategies,
real-world field trials, and integration with emerging V2G
standards to further advance resilient, trustworthy electric-
mobility ecosystems. In addition, we plan to investigate the
adversarial resilience of LLM-driven agents, focusing on their
robustness against realistic threats such as prompt injection,
jailbreaking, adversarial intent manipulation, and input poison-
ing. Strengthening the security posture of autonomous agents
will be critical for dependable deployment in safety-critical
IoEV applications.
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APPENDIX

This appendix contains supplementary figures and a table
supporting the main analysis.
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Fig. 3: Confusion Matrix for Binary Classification of EV Battery
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Fig. 4: Confusion Matrix of Predicted vs. Actual Attack Classes on
EVCS



TABLE V: Hyperparameter Configuration for All ML/DL Models

Task Model

Hyperparameters

MultiTaskLSTM
Battery State Diagnosis

[Number of layers: 2, Hidden units: 64, Classifier layers: 2 (32, 1),
Regressor layers: 2 (32, 1), Dropout: 0.3, Learning rate: 0.001, Batch
size: 8, Rounds Number: 20, Proximal regularization: 0.2, Early
stopping: True, Patience: 10]

MultiTaskGRU [Same as MultiTaskLSTM]
MultiTaskBiLSTM [Number of layers: 2, Hidden units: 64 (per direction), Classifier
layers: 2 (32, 1), Regressor layers: 2 (32, 1), Dropout: 0.3, Learning
rate: 0.001, Batch size: 8, Rounds number: 20, Proximal
regularization: 0.2, Early stopping: True, Patience: 10]
MLP [Number of layers: 4, Neurons per layer: (16, 128, 64, 3)]
EVCS Attacks Detection LSTM [Number of layers: 3, Units per layer: (100, 50, 3)]
XGBoost [Number of estimators: 500, Max tree depth: 5, learning rate: 0.07,
subsample fraction: 0.65, Column subsample rate: 0.67, Min child
weight: 9]
EV-EVCS Forecasting LSTM [Number of layers: 2, Hidden units: 16, Sequence length: (3,6,9,12)]

fix)
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dst2src_duration_ms +0.0
dst2src_mean_piat_ms ’ +0.02
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Fig. 5: SHAP Waterfall Plot for a DoS Attack Sample. The plot illus-
trates the contribution of the top features in pushing the model’s out-
put toward classifying the input as a DoS attack. The x-axis represents
SHAP values, which quantify each feature’s impact on the model’s
final prediction. The y-axis lists the most influential input features,
each annotated with the actual feature value from the input sample.
The base value E[f(x)] is the model’s average prediction over all train-
ing data, while the final output f(x) is the model’s specific prediction
for this sample. Features like bidirectional_duration_ms
(the duration of the bidirectional communication in milliseconds)
significantly increase the model’s confidence in predicting a DoS
attack.

/

You are an expert in analyzing the state of health of an electric
vehicle battery.

The battery shows signs of abnormal behavior. Key contributors to
this potential degradation include:

- the minimum cell voltage (2.51666), which has the highest impact;
- the state of charge (SOC) with a moderate contribution (0.67174);
- the maximum cell voltage (0.34681).

Please provide a clear, concise, and user-friendly explanation of the
battery’s degradation based on these indicators.

Fig. 6: Prompt Used to Interpret EV Battery Degradation Indicators

/

You are an expert in analyzing network traffic at an electric vehicle
charging station.

A recent packet was classified as: DoS. The explanation behind this
classification is as follows:

- Duration of the bidirectional communication in milliseconds had an
impact on the classification of attack of (0.47).

- Maximum of packet inter-arrival time from destination to source in
milliseconds had an impact on the classification of attack of (0.07).

- Duration of communication from destination to source in
milliseconds had an impact on the classification of attack of (0.06).

- Mean of packet inter-arrival time from destination to source in
milliseconds had an impact on the classification of attack of (0.02).

These values represent the degree to which each feature pushed the
model towards classifying the packet as a DoS attack.

The higher the value, the more it contributed to the attack
classification, indicating that these features are key indicators of
potentially abnormal traffic patterns.

Provide a clear user-friendly interpretation of why this classification
was made and what countermeasures would you recommend.

Fig. 7: Interpretability Prompt for EVCS Network Attack Detection



