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Abstract—The rise of Electric Vehicles (EVs) is driving demand
for intelligent, data-driven solutions in mobility and energy
management. Federated Learning (FL) enables collaborative
model training across distributed EV systems while preserving
data privacy. However, standard FL algorithms struggle with
client heterogeneity—such as non-IID (non-Independent and non-
Identically Distributed) data, varying compute power, and unsta-
ble communication. We propose MatchEstimate (ME), a robust,
flexible aggregation method designed for heterogeneous FL. As
a drop-in replacement for strategies like Federated Averaging
(FedAvg), ME extends our prior method, FedEstimate, to improve
performance and training stability across diverse clients. In an
EVs case study, ME significantly enhances their accuracy under
realistic conditions, advancing privacy-preserving, decentralized
intelligence for next-gen mobility.

Index Terms—Federated Learning, Aggregation Method,
Client Heterogeneity, Electric Vehicles, Edge Intelligence,
Privacy-Preserving Machine Learning, Non-IID Data, Dis-
tributed Learning, Smart Mobility

I. INTRODUCTION

The growing adoption of Electric Vehicles (EVs) is trans-
forming the transportation and energy sectors, creating new
opportunities for intelligent, data-driven applications. Mod-
ern EVs generate a rich stream of data related to energy
consumption, driving behavior, battery health, environmental
conditions, and user preferences. Leveraging this data can sig-
nificantly enhance key services such as battery management,
route optimization, and predictive maintenance. One of the
most pressing concerns for EV users is range anxiety—the fear
that a vehicle will not have sufficient battery charge to reach its
destination. Accurately predicting energy consumption under
varying conditions is essential for alleviating this concern and
improving the reliability of EV systems. However, collecting
and centralizing this data for analysis or model training is
often infeasible due to privacy concerns, data ownership, and
communication limitations. Federated Learning (FL) [1] offers
a compelling solution by enabling the collaborative training
of machine learning models across a network of distributed
EVs without the need to share raw data. FL preserves privacy
and reduces data transfer costs, making it ideal for EV fleets
and large-scale mobility infrastructures. Despite its promise,
FL faces major challenges in real-world deployments—chief
among them is heterogeneity. In EV networks, heterogeneity
is ubiquitous: vehicles differ in usage patterns, geographic
environments, hardware specifications, and driver behavior.

This leads to statistical heterogeneity (non-IID i.e., non-
Independent and non-Identically Distributed data, where each
client holds data drawn from different distributions), system
heterogeneity (varying device and network capabilities), and
participation heterogeneity (irregular client availability). These
forms of variability can severely impact the stability and
performance of FL algorithms, with standard aggregation
methods like Federated Averaging (FedAvg) [1] often failing
to converge or producing biased models. In this paper, we
propose MatchEstimate (ME), a novel aggregation method
specifically designed to address heterogeneity in FL systems.
ME is a standalone FL algorithm, and it is a promising plug-
and-play aggregation strategy that can serve as a drop-in
replacement for FedAvg in any FL framework. By enhancing
the robustness of FL under heterogeneity, ME enables its
deployment across diverse real-world scenarios. In this paper,
we focus on a key application, energy consumption prediction
for EVs to demonstrate its effectiveness. Improving model
reliability in this context contributes to reducing range anxiety
and promoting smarter, more efficient EV usage. The main
contributions of this paper are:

• Introduces ME, a new learned aggregation operator that
combines neuron matching with data-driven estimation,
offering a more robust and flexible alternative to tradi-
tional aggregation methods.

• Various state-of-the-art federated aggregation techniques
and personalisation strategies are tested with and without
ME. Incorporating ME consistently strengthens these
approaches, delivering performance gains for methods
like FedPer, FedRep, and Ditto.

• Provides a curated and physics-informed from realistic
dataset combining two public driving datasets for four
Nissan Leaf vehicles, creating a realistic benchmark for
energy consumption prediction under non-IID conditions.

The remainder of this paper is organized as follows. Sec-
tion II reviews existing work related to energy modeling and
prediction for EVs, as well as methods addressing heterogene-
ity in FL. Section III introduces the proposed ME method,
outlining its core intuition, design principles, and implemen-
tation. Section IV presents experimental evaluations across
multiple benchmarks under various heterogeneity scenarios,
demonstrating the effectiveness of the approach. Finally, Sec-



tion V summarizes the main findings and discusses potential
directions for future work.

II. RELATED WORK

In this section, we first cover standard FL baselines and
personalized FL (PFL) methods, then describe FedEstimate [2]
separately as it is key to understanding our proposed Match-
Estimate algorithm. We conclude with an overview of research
on range anxiety and how FL can help address it.

A. FL Methods for Addressing Client Heterogeneity

FL [1] was initially proposed with the goal of enabling col-
laborative model training across decentralized clients without
sharing raw data. One of the most prominent baseline methods
is FedAvg [1], which averages locally trained models to create
a global model. While FedAvg is simple and effective in IID
settings, it often struggles in non-IID environments due to
client drift and poor convergence. To address this, FedProx
[3] introduces a proximal term in the local objective function
to limit drastic updates and reduce divergence from the global
model. FedNova [4] (Normalized Objective Value Aggrega-
tion) enhances robustness by normalizing client contributions
during aggregation, thus reducing the impact of skewed local
updates. Another improvement, SCAFFOLD [5], tackles the
issue of client drift directly by using control variates to correct
the direction of local updates and align them with the global
optimization path. Other strategies to handle heterogeneity is
finding alignments in neural networks such as FedMA [6]
align hidden layer neurons across client models using layer-
wise matching, allowing each client to maintain a person-
alized model structure while benefiting from collaborative
training. More recently, MOON [7] introduces a contrastive
learning approach to enhance consistency between local and
global representations, reducing representation drift in non-
IID scenarios. These methods primarily focus on improving
convergence and stability during training, without altering the
model architecture or introducing personalization. As such,
they are often used as baselines or optimization-enhancing
techniques in general FL setups.

In practical FL applications, client data is rarely iden-
tically distributed, leading to degraded model performance
when using global models alone. To handle such statistical
heterogeneity, personalization-oriented methods have been de-
veloped. Ditto [8] proposes a bi-level optimization framework
where each client learns both a local personalized model and
a shared global model, enabling better generalization under
heterogeneity. Similarly, FedPer [9] addresses personalization
by splitting the model into shared base layers and client-
specific output layers, allowing clients to adapt to local tasks
while leveraging shared knowledge. In contrast, FedRep [10]
reverses this architecture by personalizing the feature extractor
while keeping the classifier shared—beneficial when client-
level representations differ substantially. These methods repre-
sent a significant evolution in FL, moving from a one-size-fits-
all global model toward adaptable and client-aware learning
strategies.

Most FL aggregation methods, such as FedProx and FedPer,
rely on simple data-size–weighted averaging of client parame-
ters. While effective in certain cases, this averaging approach
often fails to capture the complex, client-specific variations
present in non-IID data. As a result, it can lead to sub-
optimal global models and slower convergence, and degrading
accuracy. To address these challenges, our prior work intro-
duced FedEstimate [2], a patented aggregation framework,
which replaces the fixed averaging rule with a MultiLayer
Perceptron (MLP) deployed on the server. Instead of explicitly
averaging client parameters, the MLP learns to predict the
next global model based on the set of received client updates.
This adaptive, data-driven strategy enables the server to bet-
ter capture the complex relationships among heterogeneous
clients, providing greater flexibility than traditional rule-based
aggregation methods.

Figure 1 outlines the steps of FedEstimate executed in each
communication round, as follows:

1) Model broadcast. The server initialises (or re-
initialises) a base model M

(t)
0 and sends it to all n

clients.
2) Client-side training. Each client ei:

a) splits its local dataset into n non-IID shards
Di1, . . . , Din;

b) trains n+1 models with identical architecture
— one on the full data Di to obtain weights Wi;
— one on each shard Dij to obtain weights Wij ;

c) sends the full collection {Wi, Wi1, . . . ,Win} back
to the server.

3) Server-side “weight dataset“ construction. For every
parameter index k the server forms a feature vector xk =
[W11[k], . . . ,W1n[k], . . . ,Wn1[k], . . . ,Wnn[k] ]

T and a
target scalar yk = 1

n

∑n
i=1 Wi[k].

4) Learning the aggregator. An MLP regressor gθ is
trained on the dataset {(xk, yk)}k; the loss is mean-
squared error.

5) Predicting the global model. At inference time the
MLP consumes the current round’s concatenated shard
weights (features only) and outputs a predicted weight
vector Ŵ (t) = gθ(t)(x(t)), which becomes the new
global model.

6) Repeat. The server broadcasts Ŵ (t) to all clients and
the process repeats until convergence.

FedEstimate therefore treats aggregation as a data-driven
regression problem, enabling the server to discover a sophis-
ticated, round-adaptive combination of client updates that is
better suited to heterogeneous data than a fixed arithmetic
mean. In this paper, we propose ME, an enhancement of
FedEstimate, which incorporates a technique for aligning
semantically equivalent neurons. This alignment ensures that
weight-space operations, such as averaging or interpolation,
become meaningful and consistent across clients.

B. Range anxiety leverage using FL
Several works treated range anxiety problem for EVs such

as [11]. Presents an extended FL (E-FL) framework designed



Fig. 1. Architecture overview of the FedEstimate approach.

to accurately estimate energy consumption for EVs while
preserving driver privacy. Integrating local anomaly detection
and a similarity-based sharing policy, the approach ensures
robust learning even when vehicles exhibit diverse driving
behaviors or generate abnormal data. However, the work
relies on a basic linear model which may limit its capacity
to capture complex driving dynamics, does not benchmark
against standard FL algorithms, and does not explore how
sensitive its performance is to manually set hyperparameters
like similarity thresholds and anomaly detection settings. [12]
proposes Fed-BEV, a FL framework that models Battery
Electric Vehicles (BEVs) energy consumption using local
stacked-LSTM predictors and the FedAvg algorithm to ag-
gregate models without sharing raw data. It integrates realistic
driving scenarios simulated in SUMO and energy evaluation
via a Matlab/Simulink BEV model to generate training data.
Similarly, [13] presents a framework for predicting energy
consumption in BEVs with FL techniques to ensure user
data privacy. The authors experiment with various machine
learning models, including Random Forest, XGBoost, GRU,
ANN, and LSTM, and identify LSTM as the most effective
local model. They also evaluate five FL algorithms: FedSGD,
FedAvg, FedProx, FedPer, and FedRep [1], [3], [9], [10] and
determine that FedAvg achieves the best trade-off between
accuracy and computational cost. Extensive experiments were
conducted under various configurations to evaluate model ro-
bustness and deployment feasibility. The study concludes that
FL when combined with appropriate models, can significantly
enhance BEV energy consumption prediction accuracy while
preserving user privacy. However, both papers present several
limitations. Although they acknowledge the heterogeneity of
vehicle data, they primarily rely on FedAvg [1] without
thoroughly investigating more suitable FL methods designed
to handle heterogeneity. Furthermore, for route planning sce-
narios, using LSTM as a local model is suboptimal. LSTMs
alone often struggle with capturing long-range dependencies.

Since LSTMs process information strictly as a linear sequence,
they are ill-suited to address energy-aware routing, which is
inherently a branching graph problem. At each intersection, a
route planner must evaluate multiple possible outgoing roads
or decide to insert a charging stop. However, an LSTM’s hid-
den state does not explicitly represent these alternative paths
and therefore cannot natively compare or select among them.
Overall, while the papers offers valuable insights into privacy-
preserving modeling for EVs, its deployment feasibility and
methodological rigor could be significantly improved.

III. PROBLEM FORMULATION

This section introduces ME, which aligns client models
through neuron matching and learnable client weights aggre-
gation. It also describes pre-processing and energy modeling
used for prediction.

A. MatchEstimate

The proposed method combines FedMA’s neuron permu-
tation alignment with FedEstimate’s aggregation strategy. It
aligns neurons to make weight operations meaningful, captures
intra-client heterogeneity by training multiple shard-specific
models per client, and uses a learned aggregator at the server
to predict full-client updates.

Let C denote the number of clients, where each client i
owns private dataset Di of size ni = |Di|. All clients share one
neural architecture gw : Rdin → Rdout with parameter vector
w ∈ Rm (m is the number of parameters). Training proceeds
in synchronous rounds r = 0, . . . , R− 1. At the start of every
round the server broadcasts the current baseline weights b(r).

Each client then performs three independent local trainings
initialized with b(r), as detailed in FedEstimate (see Sec-
tion II-A).

In FL aggregation methods, the server averages corre-
sponding weights across clients. However, neural networks
are permutation-invariant—neurons with similar roles may
be ordered differently, causing naive averaging to create a
“Franken-model” with poor accuracy. FedMA [6] tackles this
by aligning neurons before averaging, underscoring the need
for proper neuron matching in federated aggregation. FedMA
concatenates weights and biases into row vectors vi,j for client
i and uj as the current reference vector. The similarity between
neuron p of client i and neuron q of the reference is measured
via the cosine distance:

Costpq = 1− ⟨vi,p,uq⟩
∥vi,p∥2 ∥uq∥2

(1)

The Hungarian algorithm takes as input the cosine distance
matrix defined in Equation 1 to obtain the permutation π ∈
Sdout with minimal total cost. π is applied to the rows of the
current layer and the columns of the next layer, preserving
forward activations. The reference weights are updated as a
running mean of all aligned clients.

After alignment, the shard deltas are stacked column-wise
to construct the matrix :

Ci = [ δi1 . . . δiK ] ∈ Rm×K . (2)



For every parameter index j we form a feature–target pair:

xij = (δi1[j], . . . , δiK [j]) ∈ RK , yij = ∆i[j] ∈ R, (3)

where:

δik = wik − b(r), ∆i = wfull
i − b(r), (4)

where wik represents the model trained on the k-th local
shard of client i, and wfull

i denotes the personalized model
obtained by client i through fine-tuning the global baseline
b(r).

Collecting all clients gives D = {(xij , yij)}i,j with C ×m
rows. Each feature dimension is standardised; the targets are
centred and scaled by a scalar factor. An MLP fθ : RK→R
is trained on D to minimise the mean-square error :

L(θ) =
1

C ×m

∑
i,j

(
fθ(x̂ij)− ŷij

)2
. (5)

To compute the client-specific update, each client i’s pre-
dicted full-model delta ∆̃i is obtained by:

∆̃i = denorm
(
fθ
(
(C⊤

i − µ)/σ
))
∈ Rm. (6)

Each client is assigned a weight proportional to its dataset
size: αi =

ni∑
j nj

. The global model update is then computed

as the weighted sum of the predicted deltas:

∆
(r)
global =

C∑
i=1

αi ∆̃i, (7)

b(r+1) = b(r) +∆
(r)
global. (8)

The proposed MatchEstimate method is summarized in
Algorithm 1.

Algorithm 1 MatchEstimate

Require: Baseline b(0), rounds R, shard count K
1: for r ← 0 to R− 1 do
2: broadcast b(r) to all clients
3: receive (∆i,Ci)

C
i=1

4: build dataset D
5: train aggregator fθ with Eq. (5)
6: for each clients i do
7: ∆̃i ← Eq. (6)
8: end for
9: ∆

(r)
global ← Eq. (7)

10: b(r+1) ← Eq. (8)
11: end for

B. Pre-processing and energy modeling

In the pre-processing stage, two raw Datasets are merged
and harmonized to produce data for four BEV of Nissan leaf
model [14]–[16], which serve as clients in a FL experiment.
The dataset shows heterogeneity in both data size—ranging
from about 3,000 to over 10,000 instances per client—and in
data distribution, with distinct temperature and speed patterns

as seen in Figure 2. The data undergoes several cleaning steps:
duplicate rows are removed, sporadic gaps are interpolated,
and columns with more than 90 % missing values are dropped.
Since one source had 1Hz frequency, the remaining vehicles
are down-sampled to a uniform 1 Hz. Units are then standard-
ized (e.g., speed-limit ranges converted to single floats), and
timestamps are reconstructed. A physics-based feature block
is engineered at this point [17].

four force components are computed from our dataset:

Froll = Crr mg (rolling resistance) (9)

Fclimb = mg sin θ ≈ mg grade (climb force) (10)

Faero = 1
2 ρCd Av2 (aerodynamic drag) (11)

Facc = ma (inertial force) (12)

These forces are computed using the following parameters:
curb mass m = 1680 kg,

rolling resistance coefficient Crr = 0.009, drag coefficient
Cd = 0.28, frontal area A = 2.3m2, air density ρ =
1.225 kg m−3, speed v, acceleration a, and road grade θ, the
latter derived from successive GPS elevations. These four force
components, along with the per-second ambient temperature,
form the five input features used to predict the vehicle’s energy
consumption.
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Fig. 2. Data distribution comparison across the four vehicles.

IV. RESULTS

We used four vehicle datasets to evaluate different ap-
proaches. A global model trained on all data served as an
upper bound, while local baselines were built by training
one model per vehicle. For FL, we tested six standard al-
gorithms—FedAvg, FedEstimate, FedProx, FedMA, FedNova,
and MOON and created variants by replacing their FedAvg
aggregation with our ME operator. Additionally, we evaluated



three PFL methods (FedPer, FedRep, Ditto) in both their
vanilla form and with ME-enhanced aggregation.

Figure 3 shows the overall cross-evaluation, and Figure 4
compares the vanilla and ME-enhanced personalised methods.
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Fig. 3. Overall R2: difference between each model and the FEDAVG baseline.

According to Figure 3, ME never degrades performance;
in no experiment did ME fall below the FedAvg baseline. It
consistently lifts every baseline it touches: for example, SCAF-
FOLD upgraded to ME-SCAFFOLD removes the negative dip
and climbs back to FedAvg parity; FedProx upgraded to ME-
FedProx adds approximately +0.01–0.02 ∆R2; and MOON
upgraded to ME-MOON adds about +0.01 ∆R2.
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From Figure 4 and Figure 5, local, non-federated models
form the lower bound with an overall score of −4.25 because
they collapse off-client. Vanilla personalised-FL baselines such
as FedPer, FedRep, and Ditto achieve only modest overall
scores between 0.28 and 0.44. Injecting ME into the aggrega-
tion step lifts all these personalised baselines: FedPer upgraded
to ME-FedPer shows the largest improvement with a +0.31
absolute R2 increase, while FedRep and Ditto upgraded to
ME variants gain between +0.13 and +0.22 absolute R2. A
notable plug-and-play benefit is that swapping to ME yields
0.1–0.3 absolute R2 improvements without requiring a hyper-
parameter sweep.
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As observed in the previous figures, the centralized model
performed very well due to its access to the complete dataset,
whereas the local models performed poorly because of their
data heterogeneity. In contrast, FL models—particularly the
ME variants—achieved intermediate performance, offering the
best trade-off between the privacy protection of local models
and the high accuracy of the centralized approach, thereby
helping to mitigate range anxiety. By treating client weights as
learnable entities within the aggregation process and aligning
neurons across clients, ME potentially leads to improved
generalization on non-IID datasets and better consistency in
merging heterogeneous local models.

V. CONCLUSION

This paper introduces MatchEstimate, a novel FL aggre-
gation technique designed to address the challenges of data
heterogeneity (non-IID), with a specific application to energy
consumption prediction for EVs. Experimental results on a
real-world dataset demonstrate that ME outperforms state-of-
the-art FL models, validating its effectiveness in heterogeneous
environments.

In conclusion, ME proves to be a powerful and reliable addi-
tion for boosting the performance of various FL approaches,
especially PFL. With further architectural optimizations and
dedicated hyperparameter tuning, even larger improvements
can be expected. ME’s plug-and-play nature, demonstrates its
versatility as a general-purpose enhancement for FL models.
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