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* Correspondence: yasin0.unal@gmail.com

Abstract: The use of electric vehicles in urban transportation is increasing daily due to their
energy efficiency and environmental friendliness. In last-mile logistics, route optimization
must consider charging station locations while balancing operational costs and customer
satisfaction. In this context, solutions for cost-oriented route optimization have been
presented in the literature. On the other hand, customer satisfaction is also important
for third-party logistics companies. This study discusses the Capacitated Electric Vehicle
Routing Problem with Time Windows (CEVRPTW) encountered in last-mile logistics. This
article defines the objective function of minimizing total tardiness and compares the routes
between the service provider logistics company and the customer receiving the service. In
this study, the CEVRPTW was solved for the minimum total tardiness objective function
with the hybrid adaptive large neighborhood search (ALNS) algorithm. The success of
ALNS was proven by comparing the differences between the optimal solutions obtained
with the CPLEX Solver and the ALNS solutions. Tardiness objective function-specific
operators for ALNS are proposed and supported by local search and VNS algorithms.
The findings of this study contribute to the literature by analyzing the balance trade-offs
between customer-oriented and cost-oriented and the effect of time windows on the number
of vehicles.

Keywords: electric vehicle routing; time windows; adaptive large neighborhood search;
tardiness; last-mile delivery

1. Introduction
The increasing popularity of electric vehicles (EVs) due to environmental concerns is

also increasing their use in the logistics sector day by day. With the tightening of environ-
mental protection policies, regulations have been introduced to prevent the distribution
of traditional fossil fuel vehicles in urban areas of some cities [1]. While EVs are rapidly
being adopted to reduce global carbon emissions, the effects of the transformation in the
transportation sector have begun to be seen and have become an important alternative to
fossil fuel vehicles. This transformation is also prominent in last-mile delivery, which is all
logistics activities related to delivery to customer households in urban areas. The growth of
urban populations and intense e-commerce activities increase the complexity of last-mile
delivery and its impact on the environment and quality of life. More and more logistics
companies are adopting EVs for cargo distribution [2]. Despite the environmental benefits
of EVs, their limitations, such as limited driving range and lack of charging infrastructure,
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continue. These problems also lead to difficulties in the route planning of EVs. Innovative
solutions are needed to overcome these challenges and promote the widespread adoption
of electric vehicles for last-mile delivery. These solutions should focus on improving bat-
tery technology to extend driving ranges [3], expanding charging infrastructure in urban
areas [4], and implementing efficient vehicle scheduling and route planning algorithms
that maximize delivery efficiency while minimizing costs [5–7]. Therefore, it is crucial to
establish effective vehicle routing and scheduling, including operational costs, that can not
only reduce total travel time but also reduce delivery costs.

Developing and implementing innovative solutions for last-mile delivery using electric
vehicles is essential to address the environmental impact and logistics challenges associated
with traditional fossil-fuel-based operations. Last-mile delivery has become an important
need with the increasing quality of life in cities. In the increasingly competitive environment,
the need for customer-satisfaction-oriented route optimization in fleet management of
service providers is also obvious. Various technologies and strategies are proposed in
the literature for task planning and route optimization of electric vehicles for last-mile
delivery. Studies include the use of optimization algorithms, machine learning techniques,
and real-time data analysis to optimize delivery routes based on factors such as traffic
conditions, delivery time windows, and charging station availability [8]. By integrating
these technologies and strategies, logistics companies can perform more sustainable and
efficient last-mile delivery operations while reducing their carbon footprint. When the
literature is examined, it is seen that studies on route optimization of electric vehicles in
last-mile logistics focus on cost-oriented objectives. In the literature, it has been observed
that studies that take into account the time window constraint work on cost-oriented
objective functions such as minimizing total distance, total time, and total energy. It seems
that there is a need for studies that take into account objective functions such as the extent
to which routes meet customer constraints based on time windows, total tardiness, and
the number of customer requests that cannot be met on time. These issues are of vital
importance for businesses that prioritize customer satisfaction. The aim of this study is
to address route optimization for customer-oriented objectives as well as cost-oriented
objectives such as total travel distance and total travel time by considering charging time.
The charging strategy applied in routing electric vehicles affects the total route duration,
including the time the vehicle is at the charging station. In last-mile delivery, customer
satisfaction is related to whether a certain product is delivered within the specified time
interval. The insights and suggestions obtained with this study can guide the development
of time that not only increases customer satisfaction but also reduces delivery costs by
reducing total travel time and provides a win–win situation for both logistics companies
and customers.

In this study, a hybrid adaptive large neighborhood search (HALNS) algorithm
is proposed for the Capacitated Electric Vehicle Routing Problem with Time Windows
(CEVRPTW), considering a full charging strategy in last-mile delivery. Efficient (HALNS)
operators are designed to minimize tardiness by taking customer time windows into
account. The proposed algorithm is tested using datasets designed for the Eskisehir Os-
mangazi University campus environment. To the best of our knowledge, there are no
papers that address task scheduling of delivery requests by minimizing total tardiness. This
paper also includes an analysis of trade-offs between the number of vehicles in the fleet and
tardiness. The effectiveness of conventional cost-oriented routing and customer-oriented
route optimization strategies for the last-mile delivery of electric vehicles is evaluated. The
contributions of this study to the literature are summarized as follows:
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• Unlike the cost-focused objective functions in the literature, the objective function of
minimizing total tardiness is studied. It takes customer satisfaction into account by
considering customer time windows.

• Since the ALNS operators proposed in the literature are not effective for the total tardi-
ness objective function, new operators are proposed to serve this objective function.

The rest of this paper is organized as follows: Section 2 briefly reviews previous
research on electric vehicle routing problems. The materials and methods are given in
Section 3. Section 4 discusses the results and performance of the proposed system. Section 5
presents the research results and provides an outlook for future work.

2. Related Works
2.1. Studies on Capacitated Electric Vehicle Routing Problem with Time Windows

The Capacitated Electric Vehicle Routing Problem with Time Windows (CEVRPTW)
is an optimization problem involving routes where an electric vehicle starts from a depot,
serves customers, and then completes its route at the depot. EVs have limited load capacity,
and each customer has a time window, namely “earliest start of service” and “latest start
of service”. Within the time windows, each customer should be visited on the routes, and
the load and charge status of the vehicles must be taken into account. In order to better
analyze the studies on the EVRPTW, articles were searched for by searching the Web of
Science with the keywords “Electric Vehicle Routing Problem” and “Time Windows”. The
graph of the obtained articles by year is given in Figure 1.
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The intense interest in this subject, especially in the last three years, can be seen in
the figure. Researchers have provided comprehensive literature reviews on the subject.
Among them, Erdelic and Caric (2019) analyzed EVRP variants, solution methods used in
the literature, and the aspects that distinguish the studies from each other [9]. Bogyrbayeva
et al. (2022) included modeling approaches and different solution methods, such as machine
learning, in their research results [10]. Kalaycı and Yılmaz (2023) analyzed the historical
development of the problem and solution methods in detail and showed them statistically
with graphs [11].

When the literature is examined, it can be seen that studies on EVRPTW obtained
routes for minimizing the total distance in the first years. In the following years, it can
be seen that the majority of studies were carried out on total time minimization and total
energy minimization (Table 1).
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Table 1. Objective functions in papers on EVRP with time windows and charging station.

Study
Minimize

Total
Distance

Minimize
Total
Time

Minimize
Total

Energy

Minimize
Total

Recharging
Cost

Minimize
Total

Tardiness

Conrad and Figliozzi,
2011 [12] ✔ ✔ ✔

Schneider et al.,
2014 [13] ✔

Felipe et al.,
2014 [14] ✔

Goeke and Schneider,
2015 [15] ✔ ✔

Hiermann et al.,
2016 [16] ✔

Keskin and Çatay,
2016 [17] ✔

Barco et al.,
2017 [18] ✔

Montoya et al.,
2017 [19] ✔

Keskin and Çatay,
2018 [20] ✔ ✔

Kancharla and Ramadurai,
2018 [21] ✔

Kancharla and Ramadurai,
2020 [22] ✔

Futelef et al.,
2020 [23] ✔ ✔

Bac and Erdem,
2021 [24] ✔ ✔ ✔

Keskin et al.,
2021 [25] ✔

Zang et al.,
2022 [26] ✔ ✔

Erdelic and Caric,
2022 [27] ✔

Cataldo-Díaz et al.,
2022 [28] ✔

Dönmez et al.,
2022 [29] ✔ ✔

Duan et al.,
2023 [30] ✔ ✔

Yu et al.,
2023 [31] ✔

Xiao et al.,
2023 [32] ✔

Wang et al.,
2025 [33] ✔ ✔

This Study ✔ ✔
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The CEVRPTW is referred to as an NP-hard combinatorial optimization problem.
Pioneering studies, which also take the charging issue into consideration in CEVRPTW
studies, primarily seek solutions to minimize the total distance traveled. Schneider et al.
(2014) proposed a mathematical model to minimize the total distance with constraints,
including a full charge strategy. They developed a new hybrid algorithm combining the
modified VNS and TS methods. They tested this method with the Erdoğan and Miller (2012)
dataset, proved its success, and contributed to the literature by creating new datasets [13,34].
Keskin and Çatay (2016) presented a mathematical model including partial charge strategy
constraints to minimize the total distance [17]. In the following years, studies on total
distance minimization have increased even more [27,30,31].

There is a need to consider the charging time when optimizing the route of electric
vehicles. While calculating the route duration and the times between nodes, the waiting
time at charging stations and the charging time also appear to be significant challenges
in route optimization. For this reason, some researchers have included charging times in
the total route duration by considering the charging station type (public, private, etc.) and
charging strategies (full, partial, etc.) in electric vehicle routing and focused on minimizing
the total time [19]. Bac and Erdem (2021) solved an EVRP that includes time windows, a
heterogeneous fleet, and partial charging constraints with Variable Neighborhood Search
(VNS) and Variable Neighborhood Descent (VND) heuristics and minimized the total
time [24]. Keskin et al. (2021) addressed an important real-life problem in terms of last-
mile delivery by proposing a simulation-based heuristic for waiting time optimization at
charging stations [25]. Cataldo-Díaz et al. (2022) aimed to minimize the total route time,
considering the time used to move between nodes in the layout, the time it takes to store
battery charge at stations, and the service time at both customer locations and charging
stations [28].

Minimizing the total energy consumption in electric vehicle routing is an important
goal [15,20–22,24,25,29,33]. Range prediction or energy consumption estimation between
the start and destination nodes has been widely studied in the literature. However, in route
optimization within the scope of fleet management, load- and distance-dependent energy
consumptions have recently been included in the model.

Some of researchers also worked on minimizing charging costs. The effects of charging
speed options and charging station type (public, private) on costs, when and at which
charging station the EV will charge, and even how much it will charge are also specific to
EVRP issues studied in the literature [20,29,30,33].

2.2. Studies on ALNS for CEVRPTW

The CEVRPTW is solved with exact solution methods, heuristic and metaheuristic
approaches, and machine learning methods. Although the methods that provide exact
solutions are quite effective in small-scale problems, they cause difficulties due to exces-
sive running time costs in large-scale problems. In machine learning methods, there are
difficulties, such as data requirements and the complexity of model training processes. For
this reason, metaheuristic approaches come to the fore due to their rapid applicability and
flexibility. The methods used in the studies that have increased rapidly over the years are
given in Figure 2.

It is seen that metaheuristics are the most preferred methods, and the ALNS algorithm
is the most used metaheuristic (Figure 2). Goeke and Schneider (2015) worked with
a mixed heterogeneous fleet for the problem using ALNS. They analyzed the effect of
factors such as speed, slope, and load on minimizing energy consumption [15]. Keskin
and Çatay (2016) studied the CEVRPTW by considering partial charge. They defined the
problem mathematically and used ALNS metaheuristics to find its solution. They showed
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that using partial charge instead of full charge gives more efficient results [17]. Keskin
and Çatay (2018) studied the problem and three different charging technologies using
metaheuristics. The study compared the fleet size and energy costs with the charging
speed [20]. Kancharla and Ramadurai (2018) solved the problem by minimizing the
energy consumption depending on the load with the ALNS algorithm [21]. Kancharla and
Ramadurai (2020) used the ALNS algorithm to solve the problem, considering nonlinear
charging and load-dependent energy consumption, which allows electric vehicles to make
multiple visits to charging stations [22]. Keskin et al. (2019) considered public charging
stations and waiting in charging queues in dynamic situations using ALNS and Mixed
Integer Linear Programming (MILP) methods [20]. Erdelić and Carić (2022) verified that
the cost of a partial charging strategy is less than that of a full charging strategy with their
proposed ALNS algorithm [27]. Dönmez et al. (2022) considered partial charging policies,
including time windows and multiple charging technologies for mixed fleets consisting
of electric and internal combustion vehicles. They calculated energy consumption and
emissions by considering the load factor and optimized the cost using different charging
technologies at charging stations and the partial charging policy [29]. Duan et al. (2023)
used ALNS to solve the EVRPTW problem, including normal, fast, and ultra-fast charging
strategies, and analyzed the cost effects of different charging technologies [30]. Yu et al.
(2023) considered the electric vehicle routing problem, including time windows, partial
charges, and parcel lockers. They proposed a network design based on parcel lockers
and charging stations at different locations, and each customer was assigned to only one
designated parcel locker. A Mixed Integer Programming (MIP) model was constructed to
solve the problem, and its performance was tested using the ALNS algorithm [31]. Wang
et al. (2025) considered an extended EVRPTW model, including EV delivery, self-pickup
from parcel lockers (PLs), and flexible delivery methods to provide services to customers.
They used the ALNS algorithm to solve the problem. They shared the results of the analysis
on the effective use of parcel lockers. In the analysis, they explained that using parcel
lockers can reduce customer service costs, and the cost reduction depends on factors such
as customers’ locations and time windows. They also observed a decrease in the number of
vehicles used in certain situations [33].
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3. Materials and Methods
3.1. Problem Description

One of the most important decisions in the delivery process is the routing decisions
for deliveries from the warehouse to the customers. The vehicle routing problem (VRP),
first scientifically defined by Dantzig and Ramser in 1959, is the problem of determining
minimum-cost routes with a fleet of vehicles to meet customer demands. The VRP, one of
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the problems in the NP-hard class, has many different types according to its constraints [35].
The aim of the VRP is to determine routes with minimum cost that meet all customers’
demands. There is rich scientific literature on the VRP and its many varieties, which have
been studied for about 60 years [35–37].

A standard VRP is a vehicle routing problem with a loading capacity limit called the
Capacitated Vehicle Routing Problem (CVRP). The Capacitated Electric Vehicle Routing
Problem (C-EVRP) aims to plan the most suitable routes for customers by considering
the energy limitations of electric vehicles and their carrying capacity constraints. Fleet
operators calculate the state of charge (SoC) along the routes and plan visits to charging
stations to avoid vehicles running out of charge.

The use of electric vehicles has also started to gain popularity since the mid-2000s.
The demand for electric vehicles has also increased significantly with the spread of “green
logistics” worldwide [38]. The use of electric vehicles, which have limitations such as
limited battery life, high costs, and various charging features in today’s technology, causes
distribution problems that are different from classical vehicles in fleet size and routing
decisions [39]. In particular, battery charging stations are relatively few compared to classic
gas stations, and the limited distances allowed by the amount of charge in the battery
require that routing decisions for electric vehicles be made with special care. However,
electric vehicles are becoming attractive in many different ways [40]. Studies conducted
on several companies provide information about how these vehicles are used in freight
distribution today. These companies implement a two-stage plan. In the first stage, loads
are transported to logistics warehouse centers outside the city with fossil-fuel-burning
vehicles. In the second stage, they are distributed to customers within the city using electric
vehicles [41].

The EVRP, an important component of distribution systems with a significant share in
logistics costs, emerges in different areas of the service sector, such as cargo transportation
and automotive, food, and textile sectors where physical production occurs. The basic
assumptions of the EVRP are as follows:

• The demand of each customer is known in advance, and the customer demand cannot
be divided (only one vehicle can serve each customer).

• The distances between customers and between the warehouse and the customers are
fixed and known in advance.

• Each vehicle has the same capacity and is ready for service in the warehouse.
• Vehicles have a specific battery capacity. The vehicles’ state of charge (SoC) should be

considered in route planning.
• In the case of charging needs, a full or partial charging strategy can be applied from

the charging strategies.

The Capacity and Time Window Electric Vehicle Routing Problem (CEVRPTW) is
a problem that aims to optimize route planning for electric vehicles. Considering the
limited battery capacities and charging times of electric vehicles, it is aimed to provide
service to customers within the specified time windows. The problem includes constraints
such as carrying capacity, locations of charging stations, energy consumption, charging
times, and total cost (e.g., distance, time, or energy usage) and plays an important role in
developing sustainable transportation solutions. A mathematical model for the Capacity
Electric Vehicle Routing Problem with Time Windows (CEVRP-TW) was proposed in
the literature by Schneider et al. (2014) [13]. Keskin and Çatay (2016) considered the
Electric Vehicle Routing Problem as a model that allows partial charging [17]. In the
study of Keskin and Çatay, situations that require vehicles to perform partial or complete
charging at charging stations while carrying a specific capacity load are considered [20].
Cataldo-Díaz et al. (2022) focus on the electric vehicle routing problem and consider the
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batteries’ state of charge (SoC). The problem includes customers, each with a specific
demand and a time window. In the proposed model, the objective function is to minimize
total time, which includes travel times between nodes, the time it takes to store battery
charge at stations, and the service time at both customer locations and charging stations [28].
In the Capacity and Time Window Electric Vehicle Routing Problem, minimizing the total
time in the objective function is critical in increasing operational efficiency and ensuring
customer satisfaction. While the limited battery capacities and charging times of electric
vehicles make routing decisions more complex, time window constraints require deliveries
or services to be performed within a specific time. Minimizing the total time allows
vehicles to complete their tasks faster and with less energy consumption, which reduces
the density at charging stations and optimizes fleet utilization, reducing costs. It also
improves customer service and contributes to sustainable transportation by minimizing
environmental impacts.

3.2. Proposed Adaptive Large Neighborhood Search

ALNS is a proven method in the literature for the CEVRP. Unlike the classical VRP,
in this problem, where charging stations are also considered, ALNS’s destroy and repair
procedures give efficient results. For this reason, we propose a hybrid adaptive large
neighborhood search (ALNS) algorithm to solve the CEVRPTW while considering the full
charging strategy. ALNS is a metaheuristic algorithm for solving large-scale and complex
optimization problems, first introduced by Ropke and Pisinger (2006) [42]. ALNS has oper-
ators that obtain new neighbor solutions by sequentially applying structures responsible
for the tasks of “destroying” and “repairing” a solution. One of the strengths of ALNS is
that it allows the efficient use of operator structures and different heuristic methods. It can
search the solution space more effectively with the operator selection mechanism, which
increases the chance of selection of successful operators. For more detailed reviews on
the acceptance criteria for ALNS, Santini et al. (2018) provide an extensive discussion [43].
Regarding the adaptive mechanism and weight update, Turkes et al. (2021) offer a compre-
hensive review [44]. The general framework and distinguishing aspects of these studies
are examined by Mara et al. (2022), while Voigt (2024) analyzes the most commonly used
and effective operators [45,46]. The pseudocode of the proposed hybrid ALNS algorithm is
given in Algorithm 1.

The algorithm changes the solution with the removal and insertion operators in each
iteration and creates Snew solutions. The solution is a list of routes. The procedures for
calculating the cost of a solution based on the objective function are presented in Table 2.

Table 2. Example solution of an RC05 problem and calculation of the tardiness objective function.

Solution (S) Route Detail

Route 1: cs5 → 75 → 42B → cs4 → 31 → 115 → 32 → cs5

Travel Time Between
Two Nodes

(
ttj−1, j ) - 86.60 - 102.12 - 38.57 - 18.18 - 88.501 - 39.37 - 53.973 -

Arrival Time at Node
(
aj ) 0 - 86.60 - 646.12 - 807.57 - 1337.19 - 1580.501 - 1799.87 - 2033.843

Service Time
(
sj ) - - 120 - 120 - - - 120 - 180 - 180 - -

Charging Time
(
tchj ) - - - - - - 511.427 - - - - - - - -

Time Window
[
ej , lj ] - - [424,

487] - [649,
729] - - - [1372,

1448] - [1459,
1531] - [1322,

1378] - -

Tardiness
(
Tj ) - - 0 - 0 - - - 0 - 49.50 - 421.87 - -

Total Tardiness 471.37
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Algorithm 1. Proposed hybrid ALNS algorithm

Input: Sinitial , Ω−, Ω+, ΩLS, N, K, Z, T0, a
Initialize i, j, w+, w−, wLS, p−, p+, pLS

Sbest ←Sinitial , Snew ← Sinitial , Scurrent ← Sinitial

T ← T0, i ← 1, j ← 0
repeat

if i == 0 (mod K) then
Select route removal operator Ω− using Roulette Wheel Selection
Select customer insertion operator Ω+ using Roulette Wheel Selection
Snew ← insert

(
remove

(
Scurrent ))

else
if j == 0 (mod N) then

Select station removal operator Ω− using Roulette Wheel Selection
Select station insertion operator Ω+ using Roulette Wheel Selection
Snew ← insert

(
remove

(
Scurrent ))

else
Select customer removal operator Ω− using Roulette Wheel Selection
Select customer insertion operator Ω+ using Roulette Wheel Selection
Snew ← insert

(
remove

(
Scurrent ))

end if
end if
acceptance rate← e(−( f (Snew)− f (Scurrent))/T)

if f (Snew) < f (Scurrent) or acceptance rate > random(0,1) then
Scurrent ← Snew

if f (Scurrent) < f (Sbest) then
Sbest ← Scurrent

end if
j← 0

else
j← j + 1

end if
if i == 0 (mod β) then

Scurrent ← Apply VNS-Based Local Search Procedure
end if
if i == 0 (mod Z) then

Update w+, w−, wLS with scores p−, p+, pLS

end if
T ← T ∗ α

i ← i + 1
until stopping criteria is met;
return Sbest

The calculation of tardiness for customer nodes is as follows:

min
n

∑
j=1

Tj j ∈ C (1)

Tj = max
{

0, aj − lj
}

j ∈ C (2)

aj+1 = aj + sj + ttj,j+1 j ∈ C (3)

aj+1 = aj + tchj + ttj,j+1 j ∈ CS (4)

The objective function is given in Equation (1), minimizing the total tardiness while
considering customers’ time windows. Tj represents the tardiness of customer node j. If the
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vehicle arrives at the customer within the time window, tardiness will be zero. Otherwise,
tardiness occurs up to Tj (Equation (2)). Equations (3) and (4) define the calculation of
arrival time based on whether the previous node is a customer or a charging station. In
Equation (3), aj is the arrival time at node j, sj is the service time at node j, lj is the latest
start time to service value, and ttj, j+1 is the travel time between node j and node j + 1
(j ∈ C; C denotes the set of customers). In Equation (4), tchj represents the charging time at
node j (j ∈ CS; CS denotes the set of charging stations).

According to the obtained cost value, new solutions are accepted using the temperature-
dependent Simulated Annealing (SA) acceptance criterion. The new solutions must respect
the constraint in Equation (5) regarding battery capacity.

SoCj > 0 (5)

If Equation (5) is not satisfied, the new solution is rejected. SoCj represents the state of
charge at node j. The updated charge level at the next node j + 1 is calculated as shown in
Equation (6), where ecr represents the energy consumption rate and dj, j+1 represents the
distance between nodes j and j + 1.

SoCj+1 = SoCj −
(
ecr× dj,j+1

)
(6)

Then, the algorithm expands the solution space with local search (LS) methods. It
continues these operations until the stopping criterion is met. In order to use the operator
structures efficiently, the algorithm updates the weights w−, w+, wLs using the p−, p+, pLS

scores obtained every Z iteration. Details are given in Section 3.2.1 for the initial solution,
Section 3.2.2 for the neighborhood solutions, Sections 3.2.3 and 3.2.4 for operators, and
Section 3.2.5 for the LS method.

3.2.1. Initial Solution

The proposed heuristic for minimizing customer tardiness in the initial solution starts
by creating the number of routes obtained by dividing the total customer demand by the
vehicle load capacity. All customers are assigned to each route by sorting them according
to their latest start time to service value. Customers assigned to routes are added as long as
they do not exceed the vehicle capacity. The pseudocode of the initial solution is given in
Algorithm 2.

Algorithm 2. The proposed heuristic algorithm for initial solution generation

Input: customer_list
Sort all customers by their due_date in ascending order
Calculate the total_demand of customers
num_routes ← ⌈total_demand/vehicle_capacity⌉
routes ← [ ]

for route in num_routes do
route[i] ← [ ]

end for
route_index ← 1
for customer in sorted customer_list do

if adding the customer to route[routeindex ] does not exceed vehicle_capacity then
Append the customer to route[route_index]

else
route_index ← route_index + 1
Append the customer to the new route: route[route_index]

end if
end for
return routes
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3.2.2. Neighborhood Solutions

ALNS creates new solutions by destroying a solution and repairing it again. It selects
and applies an operator from the Ω− removal operator set at each step. This causes the
structures on the route to be removed from the solution. Then, with the operator selected
from the Ω+ insertion operator set, it inserts the removed structures back into the routes
with specific approaches. Thus, a new solution is obtained, and neighboring solutions are
discovered. The selection of an operator i depends on the probability w(i)/∑i′∈Ω+,− w(i

′)
.

This probability is calculated depending on each operator’s weight (w). Initially, the
weights of all operator groups are equal; 1

Ω+
gives the weight of insertion, and 1

Ω− gives the
weight of the removal operators. Roulette wheel selection is used to select the operators.
Within the operator group, the weight of each operator is calculated, and the probability of
using the operator with the higher weight increases. This increase is calculated according
to the state of the newly obtained solution Snew, as given in Equation (7).

πi =


π1, if Snew < Sbest

π2, if Sbest < Snew < Scurrent

π3, if Snew > Scurrent

0 , if Snew = ∅

(7)

π1, π2, and π3 are obtained based on how good the new solution is. The score is π1 if
the applied values are the operators that led to the best solution, π2 if they improved the
existing solution, π3 if it is an acceptable solution, and zero if no solution was found. At
iteration step Z at the specified iteration lifting frequency, the operator weights are updated
with Equation (8).

w
(
i′
)
=

{
(1− r)·w(i) + r · πi/Qi , if Qi > 0
(1− r)·w(i) , if Qi = 0

(8)

When updating the weight, the previous weight value w(i), the number of times
operator i is used Qi, and the total score of operator i are used. r is a parameter in
the interval (0, 1) and determines whether the score or the old value dominates when
determining the new value.

3.2.3. Removal Operators

Removal operators are important for obtaining different neighborhoods. Examining
the existing structures in the routes breaks the solution in certain situations and provides
the opportunity to create better routes. This study uses three groups of removal operators:
customer, charging station, and route.

Customer Operators: Customer removal operators aim to remove customers from
the route. When the operators are applied, the customers removed from the solution are
added to the unserved customer list and removed from the served customer list. When the
operators are applied, the number of customers to be removed (P) is set as min([0.4TC, 60])
of the total number of customers (TC) [21]. In addition to the well-known operators
Random-Customer Removal, Related-Customer Removal, and Worst-Distance-Customer
Removal, we propose three more operators. Random-Customer Removal implements the
removal of P customers randomly selected from a list of all customers from the relevant
routes. Related-Customer Removal takes a seed customer selected from the list of all
customers as a reference and calculates the distance of all other customers to this customer
as a cost. It removes the P lowest cost customers from the related routes. The purpose of
this operator is to remove clustered customers that are close to each other. Worst-Distance-
Customer Removal, on the other hand, is cost-oriented and calculates how much distance
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cost all the customers on all routes incur in the solution and removes the P customers that
increase the cost the most for the solution. These operators are commonly used heuristics
in the literature [42,46,47]. In addition, the following operators are proposed in this study:

1. Tardiness versus Worst-Distance-Customer Removal: The proposed operator eval-
uates the cost impact of each customer across all routes by considering both their
earliest service start time and their distance from the preceding node. The objective
is to identify and remove the customer P whose presence contributes the most to
increased route costs. By eliminating customers with late service start times from
the beginning of a route, this approach enhances schedule efficiency and minimizes
overall tardiness. The pseudocode is given in Algorithm 3.

Algorithm 3. Tardiness versus Worst-Distance-Customer Removal

Input: served customers, unserved customers, routes
P← the number of customers to be removed from the solution
customers_to_remove← []

for each route in routes do
for each node in route do

if node is Customer then
be f ore_node← Find before node
cost← node.earliest_start_time_to_service × distance f rom be f ore_node to node
Append (node, cost) to customers_to_remove

end if
end for

end for
sorted_customer← Sort customers_to_remove by cost descending
customers_to_remove← sorted_customer[0 : P]
Remove every customer in customers_to_remove
Update served customers and unserved customers

The cost function is formulated by considering both distance and time windows. The
cost, earliest_start_time_to_servicej+1 × distancej, j+1 (j represents nodes), enables a better
balance between geographical and time constraints. Since both distance and tardiness are
to be minimized, multiplication is a suitable form. If one component was to be minimized
and the other maximized, a ratio might have been more appropriate.

2. Tank-Capacity-Violation-Customer Removal: Unlike other removal strategies, the
operator targets inconvenient routes requiring charging stations. It removes the first
node and all subsequent nodes from the solution on routes where the vehicle cannot
complete its route within the available battery capacity. The goal is to optimize charg-
ing efficiency by shortening routes that require charging and eliminating unnecessary
charging station visits. This results in more efficient energy use and improves overall
route feasibility. The pseudocode is given in Algorithm 4.

3. Time-Window-Violation-Customer Removal: The operator targets infeasible routes
where time window constraints are violated. It identifies the first overdue customer
and removes both that customer and all subsequent customers from the route. The
goal is to improve the feasibility and efficiency of the overall route plan by reconfigur-
ing routes to ensure compliance with time window constraints. Eliminating delayed
customer sequences improves compliance with service time requirements and helps
minimize overall tardiness. The pseudocode is given in Algorithm 5.



Appl. Sci. 2025, 15, 4703 13 of 27

Algorithm 4. Tank-Capacity-Violation-Customer Removal

Input: served customers, unserved customers, routes
for each route in routes do

if tank capacity violation on the route then
node← Find node where SoC is negative
if node == route[−1] then

last_customer← Get last_customer in route
Remove last_customer

else
node_index← Get index
Remove route[node_index : −1]

end if
end if

end for
Update served customers and unserved customers

Algorithm 5. Time-Window-Violation-Customer Removal

Input: served customers, unserved customers, routes
for each route in routes do

if time window violation on the route then
node← Find node where time window violation
if node == route[−1] then

last_customer← Get last_customer in route
Remove last_customer

else
node_index← Get index
Remove route[node_index : −1]

end if
end if

end for
Update served customers and unserved customers

Route Operators: Route removal operators remove selected routes from the solution
with certain approximations. This process is applied every K iteration instead of every
iteration due to runtime cost. The number of routes to be removed (W) is determined in the
range of min(0.1TR, 0.4TR) depending on the total number of routes (TR) [21]. Random-
Route Removal and Greedy-Route Removal operators are used in the literature. Random-
Route Removal removes W randomly selected routes from all routes in the solution [48].
Greedy-Route Removal removes the W routes with the lowest number of customers. Its
purpose is to create balanced routes in terms of the number of customers and to prevent
routes with a small number of customers from being included in the solution [17]. In
addition to these operators, we propose two more operators focused on tardiness and
infeasibility in this study.

1. Max-Tardiness-Route Removal: The proposed operator examines each of the routes
in the solution and calculates their tardiness. It sums up the total tardiness on a route
and keeps the tardiness on the route as costs. It removes the W routes with the highest
tardiness from the solution. The pseudocode is given in Algorithm 6.
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Algorithm 6. Max-Tardiness-Route Removal

Input: served customers, unserved customers, routes
W← Calculate number of routes to be removed from the solution
routes_to_remove← [ ]
for each route in routes do

cost← Calculate total tardiness of the route
Append (route, cost) to routes_to_remove

end for
sorted_routes← Sort routes_to_remove by cost descending
routes_to_remove← sorted_routes[ 0 : W ]

Remove every route in routes_to_remove
Update served customers and unserved customers

2. Infeasible-Route Removal: The proposed operator examines each of the routes in
the solution in terms of state of charge status, load capacity, and time window. It
removes W infeasible routes from the solution. This operator paves the way for the
deconstruction of infeasible solutions. The pseudocode is given in Algorithm 7.

Algorithm 7. Infeasible-Route Removal

Input: served customers, unserved customers, routes
W← Calculate number of routes to be removed from the solution
routes_to_remove← [ ]
for each route in routes do

if route is not feasible by (tank capacity, payload capacity time window) then
Append route to routes_to_remove

end if
end for
routes_to_remove← routes_to_remove[0 : W]

Remove every route in routes_to_remove
Update served customers and unserved customers

Station Operators: Charging station removal operators remove selected stations
from the solution with certain approximations. Instead of every iteration, the process is
applied once in N iterations, where no improvement occurs. The number of stations to be
removed (Q) is set as min(0.1TS, 10) of the total number of charging stations (TS) [21].
Two station removal operators were used in this study. Random-Station Removal removes
Q randomly selected stations from the list of stations on all routes in the solution. Worst-
Charge-Usage-Station Removal examines the routes with stations in the solution. It
calculates the remaining charge when arriving at the station and takes it as a cost. The Q
stations with the highest cost are removed from the relevant routes. This operator aims to
prevent going to the station when the remaining charge is high.

3.2.4. Insertion Operators

Insertion operators play a role in re-incorporating nodes previously removed from
routes back into solutions. These operators edit and optimize routes while adhering to
problem constraints such as time windows, vehicle capacity, and charging requirements to
ensure the solution remains viable. In this study, two different groups of insertion operators
are used: customer and charging station.

Customer operators: These operators insert the customers that are removed from the
routes and added to the unserved customer list back to the routes. It is important that the
customers to be included in the routes can be inserted into feasible locations. There are three
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commonly used operators in the literature, namely Random-Customer Insertion, Greedy-
Customer Insertion, and Regret-2-Customer Insertion. Random-Customer Insertion tries
to include each customer in the unserved customer list by selecting a random route and
a random location in the solution [49]. However, in this study, the route arrangements of
the operators do not allow the routes to exceed the vehicle capacity. Greedy-Customer
Insertion examines each customer in the unserved customer list in order and inserts the
customer with the least insertion cost among all routes. Regret-2-Customer Insertion
calculates the best insertion and second-best insertion costs for each customer in the
unserved customer list. The cost between these two values is determined as the regret
value. The customer with the highest regret value is selected and added to the appropriate
location. The purpose of this operator is to reduce the cost increase in future insertions
and to prevent the cost increase caused by greedy approaches [47]. In addition to these
operators, we propose three more operators that minimize the distance cost while adapting
to customer time windows.

1. Best-Customer Insertion: The proposed operator examines all routes for each cus-
tomer in the unserved customer list. For all locations in the routes, the distance to the
customer to be added multiplied by the earliest start time to service value is taken as
the cost. If the current location is a station or a warehouse, the cost is calculated by
taking the nearest customer’s earliest start time to service value. This operator aims
to ensure not only distance cost but also time window compatibility in the current
route. The pseudocode is given in Algorithm 8.

Algorithm 8. Best-Customer Insertion

Input: served customers, unserved customers, routes
customer_to_added_new_route← [ ]
customer_cost← [ ]
for each unserved customer in unserved customers do

for route in routes do
for node in route do

if node is Customer then
be f ore_node← Find before node
distance← Calculate distance from be f ore_node to

unservedcustomer

cost← node.earliest_start_time_to_service× distance
if not payload capacity violation then

Append (node, cost, position) to customer_cost
end if

end if
end for

end for
if customer_cost != [ ] then

Append every customer in customer_cost at position
else

Append unserved_customer to customer_to_added_new_route
end if

end for
while customer_to_added_new_route != [ ] do

new_route← [ ]
Append every customer in customer_to_added_new_route while payload-capacity violation

end while
Update served customers and unserved customers
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2. Time-Window-Greedy-Customer Insertion: Following the time window constraints,
the proposed operator inserts each unserved customer into the first available position
in the routes. The insertion decision is made by evaluating the latest start time to
service (li) value of customer i and the travel time

(
tij
)

between customers i and j. A
feasible insertion is determined based on the condition

(
li + tij < lj

)
. Thus, instead of

only considering the latest start time to service value, the travel time is also considered
to obtain a suitable time window. The pseudocode is given in Algorithm 9.

Algorithm 9. Time-Window-Greedy-Customer Insertion

Input: served customers, unserved customers, routes
for each unserved customer in unserved customers do

for route in routes do
for node in route do

if node is Customer then
travel_time← Calculate travel time between unserved_customer and node
if (unserved_customer. latest_start_time_to_service + travel_time)

< node.due_date then
Insert unserved_customer into route at position of node

end if
end if

end for
end for

end for
Update served customers and unserved_customers

3. Time-Window-Feasible-Customer Insertion: The proposed operator differs from the
Time-Window-Greedy-Customer Insertion by first reordering the unserved customers
based on their latest start time to service value. After sorting, the operator evaluates all
feasible insertion positions across the available routes. The insertion process ensures
that the updated route remains feasible in terms of both time window constraints and
vehicle load capacity. The pseudocode is given in Algorithm 10.

Algorithm 10: Time-Window-Feasible-Customer Insertion

Input: served customers, unserved customers, routes
customer_to_added_new_route← [ ]
unserved_customers← Sort unserved customers by latest start time to service
for each unserved_customer in unserved_customers do

for route in routes do
Find the best_position cost of unserved_customer into every position of route
if best_position == [ ] then

Append unserved_customer to customer_to_added_new_route
else

Insert unserved_customer to best_position
end if

end for
end for
while customer_to_added_new_route != [ ] do

new_route← [ ]
Append every customer in customer_to_added_new_route while payload capacity violation

end while
Update served customers and unserved customers
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Station Operators: Including charging stations in routes is important in EVRPs and
considerably increases the problem’s difficulty. The station insertion operators used in
this study only add routes that are infeasible due to charging constraints and whose SoC
level will be insufficient. The stations added to the routes bring extra time costs due to the
use of the full charging strategy. Therefore, it is important to add stations in appropriate
locations. Three station insertion operators were used in this study. Random-Nearest-
Station Insertion inserts the charging station closest to the random points of the routes
with an insufficient SoC level. Greedy-Station Insertion calculates the first node where
the charging level will be negative in routes with an insufficient SoC level and adds the
closest station before this node. Best-Station Insertion scans the route backward, starting
from the node where the charging level will be negative for routes with an insufficient
SoC. It calculates the closest charging station to each appropriate point by looking at the
cost di,station + dstation,j. It inserts the charging station with the lowest cost that will make
the route feasible. This operator adds not only the cost of traveling from one point to the
station but also the cost of traveling from the station to the next point.

3.2.5. Local Search

Local search (LS) methods were included in this study due to their fast applicability
and ability to produce effective solutions, and their aim was to search the solution space
faster. In order to apply LS methods, the VNS-based procedure was used [13,50,51]. The
pseudocode is given in Algorithm 11.

Algorithm 11. VNS-based LS

Input: Scurrent, kmax

k ← 1
while k ≤ kmax do

Select LS operator ΩLS using Roulette Wheel Selection
Snew← Local_Search(Scurrent)
if f (Snew) < f (Scurrent) then

Scurrent ← Snew

k← 1
else

k← k + 1
end if

end while
return Scurrent

Two groups of LS methods are used for the problem: intra-route (Intra) and inter-route
(Inter) [9,27]. In IntraRelocate, a customer selected from a route is moved to another
location on the same route. This process aims to reduce the cost of a single route. In IntraEx-
change, the locations of two customers selected on a route are swapped. In IntraOrOpt,
a consecutive customer segment selected on a route is moved to another location. It can
be considered the relocation of a customer group within a route. In IntraTwoOpt, two
customer arcs selected on a route are arranged in reverse on the route. InterRelocate is
the process of moving a customer selected on a route to a different route. InterExchange
is the process of swapping customers selected from two different routes with each other.
InterCrossExchange is the mutual relocation of customer segments selected from two
different routes. Inter2Opt* is the process of swapping customer segments selected on two
different routes crosswise on the routes.
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4. Experimental Results
4.1. Validation of the Adaptive Large Neighborhood Search

The CEVRPTW dataset containing the Eskişehir Osmangazi University campus envi-
ronment data is used in this study [52,53]. For instance, the RC05 test problem with five
customers is given in Table 3.

Table 3. RC05 test problem.

Customer
ID Location

Earliest Start
Time to
Service

Latest Start
Time to
Service

Service
Time Request

75 39.747233–30.47377 424 487 120 38
42B 39.752333–30.481199 649 729 120 95
32 39.752487–30.488123 1322 1378 180 76
31 39.752941–30.483072 1372 1448 120 57

115 39.752373–30.490197 1459 1531 180 76

The map of the ESOGU environment, which represents customers, charging stations,
and warehouses in the datasets, is given in Figure 3.
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Test problems were solved in Python 3.12 on a Windows 10 PC with an AMD Ryzen
7 4700 U @2.00 GHz processor and 8 GB RAM. The vehicle parameters were an energy
consumption rate of 1.0, a charging rate of 0.18, a battery capacity of 3000 kWs, a speed of
12.5 m/s, and a load capacity of 350 kg. For large-size problems, the algorithm parameters
were chosen as an iteration number of 8000, a cooling rate of 0.9980, an initial temperature
of 10,000, a number of iterations without improvement (N) of 8, a number of route removal
frequency (K) of 25, and a weight update frequency (Z) of 10. For small problems (5–10–20),
the solution was obtained with 1000 iterations while keeping the other parameters the
same. Each test problem was solved 10 times by ALNS, and the best results obtained were
tabulated. In addition, optimal results were obtained using CPLEX Solver for the objective
function of minimizing the total distance by using a full charging strategy. Exact solutions
with zero tardiness are compared with solutions obtained by ALNS in Table 4. In large-scale
problems with 60 customers, the mathematical model could not provide solutions in a
reasonable time. The results were obtained by CPLEX in a three-hour time limit.
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Table 4. CPLEX vs. ALNS results for min. total distance with time windows in small instances.

Instances
CPLEX Proposed Hybrid ALNS

∆%# of
Route

Total
Distance (m)

Total
Tardiness (s)

Runtime
(s)

# of
Route

Total
Distance (m)

Total
Tardiness (s)

Runtime
(s)

C05 2 5005.43 0 0.05 2 5005.43 0 0.198 0
R05 3 5726.1 0 0.12 3 5726.1 0 0.201 0

RC05 4 7093.17 0 0.05 4 7093.17 0 0.252 0
C10 3 7530.96 0 0.23 3 7530.96 0 0.265 0
R10 3 6823.93 0 0.06 3 6823.93 0 0.288 0

RC10 3 7349,86 0 0.19 3 7349.86 0 0.272 0
C20 6 12,736.51 0 0.44 6 12,736.51 0 3.123 0
R20 6 14,023.35 0 4.51 6 14,023.35 0 3.035 0

RC20 6 12,447.92 0 0.36 6 12,447.92 0 2.708 0
C40 11 21,145.80 0 3.41 11 21,828.27 0 17.160 3.22%
R40 11 26,316.81 0 75.09 11 27,193.94 0 16.397 3.33%

RC40 11 23,372.91 0 19.31 10 23,931.24 0 17.838 2.38%
C60 13 28,711.04 * 0 10,800 12 26,769.65 0 71.939 −6.76%
R60 12 29,396.37 * 0 10,800 12 27,550.95 0 77.537 −6.27%

RC60 12 30,000.09 * 0 10,800 12 28,464.34 0 71.303 −5.11%

* It is not the optimal solution. In large-scale problems, the mathematical model could not provide solutions in a
reasonable time. The results were obtained by CPLEX in a three-hour time limit.

It is seen that the proposed hybrid ALNS algorithm gives optimal solutions for up to
40 customers. For problems with 40 customers, ALNS deviates from the optimal results by
3.22%, 3.33%, and 2.38%, respectively. In test problems with 60 customers, ALNS outper-
forms in reasonable times, achieving distance savings of up to 6.76%. As the problem size
increases, the running time of CPLEX increases significantly, while ALNS finds solutions
in as little as 70 s, even for problems with 60 customers. The success of the hybrid ALNS
algorithm is proven.

4.2. Trade-Offs Between Cost-Oriented and Customer-Oriented Solutions

An example route representation of the C20 problem from the obtained results is given
in Figure 4.
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Figure 4. Solution representation of the test problem C20.

In this study, customer-oriented and cost-oriented scenarios were created in terms of
last-mile delivery. In the cost-oriented scenario, the logistics provider tries to minimize the
cost by minimizing the total distance without taking into account when the customer wants
the product. Classical ALNS solves the problems with operators known in the literature
for the cost-oriented scenario. In the second scenario, the customer-satisfaction-oriented
scenario, the aim is to optimize the route to provide customer time windows, taking into
account customer satisfaction rather than cost. In this context, the number of vehicles is
expected to increase. In Table 5, the results of our proposed hybrid ALNS for both scenarios
are given, and the results are compared in terms of distance and tardiness.
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Table 5. Comparisons of total distances for solutions with cost-oriented and customer-satisfaction-
oriented distance comparison.

Instances
Cost-Oriented Solutions Customer-Satisfaction-Oriented Solutions

∆%# of
Route

Total
Distance (m)

Total
Tardiness (s)

Runtime
(s)

# of
Route

Total Distance
(m)

Total
Tardiness (s)

Runtime
(s)

C05 2 3956.43 3423.137 0.177 2 5005.43 0 0.198 26.51
R05 2 5064.28 2652.562 0.180 3 5726.1 0 0.201 13.06

RC05 1 4956.02 4388.143 0.221 4 7093.17 0 0.252 43.12
C10 2 5645.72 6744.392 0.228 3 7530.96 0 0.265 33.39
R10 2 4980.35 7014.425 0.254 3 6823.93 0 0.288 37.02

RC10 2 5842.88 5013.898 0.244 3 7349.86 0 0.272 25.79
C20 4 9332.26 8005.543 2.801 6 12,736.51 0 3.123 36.48
R20 4 9975.22 11,432.066 2.631 6 14,023.35 0 3.035 40.58

RC20 4 9401 10,434.282 2.437 6 12,447.92 0 2.708 32.41
C40 7 15,634.88 20,972.411 12.213 11 21,828.27 0 17.160 39.61
R40 8 18,362.61 23,123.101 11,758 11 27,193.94 0 16.397 48.09

RC40 7 16,796.03 27,070.676 13,054 10 23,931.24 0 17.838 42.48
C60 11 25,095.65 2342.656 28.446 12 26,075.12 0 71.939 6.67
R60 10 26,198.41 3195.702 34.346 12 27,550.95 0 77.537 5.16

RC60 11 25,957.16 6182.938 32.952 12 28,613.43 0 71.303 9.66

The results show that the cost-driven solution has lower total distance costs; however,
customer time window constraints are not met. Delays are higher compared to solutions
where the total tardiness is minimized. On the other hand, in customer-satisfaction-oriented
solutions, all customer time windows are met. However, in these problems, the distance
cost increased by up to 50%. In order to meet customer time windows, the number of
routes, and therefore, the number of vehicles, increased in the test problems except for
C05. For example, in the C40 test problem, the results of the two scenarios are compared in
terms of the number of routes (number of vehicles) and customer expectations (Figure 5).
When customer satisfaction is not prioritized, fewer routes are created, and the vehicles’
capacities are used as much as possible. When customer satisfaction is prioritized, vehicle
capacities are not fully used.
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Figure 5. Utilization of vehicle capacity for C40 test problem based on cost-oriented and customer-
satisfaction-oriented solutions.

As shown in Figure 5, while distribution is performed with 7 vehicles in the cost-
oriented solution, it is carried out with 11 vehicles in the customer-satisfaction-oriented
solution. The vehicle occupancy rate is 91.5% in distributions with seven vehicles in the
cost-oriented solution. In the customer-oriented solution, on the other hand, it is seen that
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half of the vehicles (58.2%) are delivered empty in the deliveries made with 11 vehicles.
In this direction, it is clear that the vehicle, driver, and operational costs of the logistics
provider will increase.

A comparison of the solutions of both scenarios for the R05 test problem is presented
in the video [54]. Maps of the solutions in the scenarios are given in Figures 6 and 7.
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The cost-oriented solution is obtained by minimizing the total distance. In Scenario 1,
customers are served with two vehicles.

In scenario 2, the customer-oriented solution is to increase the number of vehicles to
three to meet the time windows of the customers. In the first scenario, the total tardiness is
2652.56 s, while in the second scenario, it was 0 s.

4.3. Evaluation Perspective from Fleet Management

A business may not always have as many vehicles as the number of routes required
to ensure customer satisfaction. Ensuring minimum tardiness with fewer vehicles is
important to decrease costs and satisfy customer time windows. Total tardiness according
to fleet size scenarios is analyzed for the problems with 40 and 60 customers and given
in Tables 6 and 7.
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Table 6. Number of tardy deliveries in problems with 40 customers.

Test
Problems

# of
Routes

# of
Vehicles

# of Tardy
Deliveries Total Tardiness (s)

C40 11 11 0 0
C40 11 10 2 1095.15
C40 11 9 7 2874.56
C40 11 8 10 5712.73
C40 11 7 13 9236.65
C40 11 6 17 14,240.29

R40 11 11 0 0
R40 11 10 2 804.75
R40 11 9 5 3424.78
R40 11 8 9 7390.73
R40 11 7 13 12,823.69
R40 11 6 17 19,573.68

RC40 10 10 0 0
RC40 10 9 2 1213.66
RC40 10 8 7 3883.94
RC40 10 7 9 8276.91
RC40 10 6 16 13,543.13

Table 7. Number of tardy deliveries in problems with 60 customers.

Test
Problems

# of
Routes

# of
Vehicles Tardy Deliveries Total Tardiness (s)

C60 12 12 0 0
C60 12 11 1 225.94
C60 12 10 4 1272.41
C60 12 9 8 3080.85
C60 12 8 14 6265.13
C60 12 7 23 10,587.50
C60 12 6 27 17,708.64

R60 12 12 0 0
R60 12 11 2 673.87
R60 12 10 6 2265.83
R60 12 9 10 4163.19
R60 12 8 18 7337.46
R60 12 7 20 12,431.94
R60 12 6 28 19,758.54

RC60 12 12 0 0
RC60 12 11 1 91.79
RC60 12 10 5 1352.66
RC60 12 9 10 3543.19
RC60 12 8 15 6589.23
RC60 12 7 21 11,045.43
RC60 12 6 27 17,407.87

The results show that total tardiness increases rapidly as the number of vehicles
decreases. Additional analyses were conducted to assess the statistical significance of this
trend. The following hypotheses were formulated:

H0: There is no relationship between fleet size and total tardiness.

Ha: There is a relationship between fleet size and total tardiness.

In response to these hypotheses, the regression statistics and coefficient values for the re-
lationship between fleet size and total tardiness are presented in Tables 8 and 9, respectively.
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Table 8. Statistical relationship between fleet size and number of tardy deliveries for the
60-customer problems.

Regression Statistic Value

Multiple R 0.980593
R Square 0.961563

Adjusted R Square 0.95954
Standard Error 1.991838
Observations 21

Table 9. Regression coefficients for the relationship between fleet size and tardy deliveries in the
60-customer problem set.

Coefficients Standard Error t Stat p-Value

Intercept 54.07143 2.003659 26.98634 1.29 × 10−16

# of Vehicles −4.7381 0.217327 −21.8017 6.6 × 10−15

Table 8 shows the basic statistics of the regression analysis for the problem sets with
60 customers (R60, C60, and RC60). The high R2 value (0.9616) indicates that the model
explains a high proportion of the variability in the dependent variable (number of tardy
deliveries). This means that 96.16% of the variation in the number of tardy deliveries can
be explained by fleet size. The p-value < 0.05 confirms that there is a statistically significant
relationship between fleet size and tardiness.

Table 9 shows the coefficients of the regression model that examines the effect of
fleet size on the number of tardy deliveries. The coefficient for the number of vehicles is
−4.7381, which implies that each additional vehicle reduces the number of tardy deliveries
by 4.74 units on average. The p-value is quite low, which implies that the effect is statisti-
cally significant. Table 10 presents the ANOVA results that assess the significance of the
regression model.

Table 10. ANOVA results for the regression model between fleet size and number of tardy deliveries
in the 60-customer problem set.

df SS MS F Significance F

Regression 1 1885.762 1885.762 475.3121 6.6 × 10−15

Residual 19 75.38095 3.967419
Total 20 1961.143

In Table 10, the F-statistic is quite high at 475.31, indicating that the model explains a
large and significant portion of the variance in the number of tardy deliveries. Moreover,
the significance value (Significance F = 6.6 × 10−15) is well below the 0.05 significance level.
These results lead to the rejection of hypothesis H0. In conclusion, it is shown that the
regression model is statistically significant, meaning that the relationship between fleet size
and the number of tardy deliveries is statistically significant and not random.

The graphical representation of the tardy deliveries is given in Figure 8.
In problems with 40 customers, when the number of vehicles decreased from 11 to 6,

the number of delayed deliveries increased from 0 to 17. In problems with 60 customers,
while 27–28 deliveries are not met within time windows with 6 vehicles, all of them could be
met on time when the number of vehicles is increased to 12. These results highlight a clear
trade-off between fleet size and service quality in terms of on-time deliveries. To investigate
this trade-off, a Pareto frontier analysis was performed for each fleet size scenario in the
60-customer problem, and the corresponding visualizations are presented in Figure 9.
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Figure 9 shows the Pareto frontier, representing the trade-off between the number
of vehicles and tardiness. As the fleet size increases, a significant reduction in tardiness
is observed. However, after a certain point—around 10 vehicles in the tested cases—the
marginal improvement becomes minimal. According to the trade-off analysis, fleet man-
agers can decide on the appropriate number of vehicles by looking at the trade-offs between
solutions. Based on the trade-off curve, fleet managers can make decisions when consider-
ing adding more vehicles.

This study contributes to the literature on last-mile deliveries with electric vehicles
by comparing the effectiveness of traditional cost-oriented route planning approaches
with customer-oriented optimization strategies. However, recent literature highlights the
uncertain effects of factors such as delivery distance, courier revenue, and task volume on
courier availability and coverage rate in crowdsourced door-to-door delivery models [55].

5. Conclusions and Future Works
Today, in terms of last-mile delivery, businesses consider not only operational costs

but also customer satisfaction. However, some situations affect the cost, such as the number
of vehicles, charging time at stations, number of customers, customer demand, and time
window. Such situations cause decision-makers to choose between customer satisfaction
and cost. A literature review shows that cost-oriented objective functions such as total
distance, energy, travel time, recharging, or operational cost have been studied in EVRPs.
On the other hand, it has been noticed that there is a need for studies on minimizing
total tardiness, which deals with customer satisfaction. It was found that metaheuristic
algorithms are frequently used in EVRP studies (58.5%), and the ALNS algorithm is used
in more than 30%. The ALNS algorithm was found to be overused for the problem, and a
hybrid ALNS algorithm was developed. New purpose-specific operator designs for the
minimum total tardiness objective function were designed and contributed to the literature.
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The functionality of ALNS is extended with the LS-based VNS algorithm. In order to prove
the effectiveness of the proposed ALNS for the minimum total tardiness objective function,
the problems were first solved with CPLEX, and the results were compared. With the
proposed ALNS, large-size problems can be solved in a reasonable time, such as 70–80 s.
The results of two scenarios, customer-satisfaction-oriented and cost-oriented solutions,
were compared. The relationship between meeting the customer time windows and the
number of vehicles was analyzed, and trade-offs were presented to guide decision-makers.

In future studies, charging costs will be taken into account by taking into account issues
such as the condition of the charging station and waiting time for charging. The impact of
using different charging strategies on cost and customer satisfaction will be analyzed. In
this context, showing trade-offs will contribute to the literature and decision-makers.
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34. Erdoĝan, S.; Miller-Hooks, E. A Green Vehicle Routing Problem. Transp. Res. E Logist. Transp. Rev. 2012, 48, 100–114. [CrossRef]
35. Toth, P.; Vigo, D. Vehicle Routing: Problems, Methods, and Applications; SIAM: Philadelphia, PA, USA, 2014; ISBN 1611973589.
36. Laporte, G. Fifty Years of Vehicle Routing. Transp. Sci. 2009, 43, 408–416. [CrossRef]
37. Cordeau, J.-F.; Laporte, G.; Savelsbergh, M.W.P.; Vigo, D. Vehicle Routing. Handb. Oper. Res. Manag. Sci. 2007, 14, 367–428.
38. Lin, C.; Choy, K.L.; Ho, G.T.S.; Chung, S.H.; Lam, H.Y. Survey of Green Vehicle Routing Problem: Past and Future Trends. Expert

Syst. Appl. 2014, 41, 1118–1138. [CrossRef]
39. Kim, G. Electric Vehicle Routing Problem with States of Charging Stations. Sustainability 2024, 16, 3439. [CrossRef]

https://doi.org/10.1109/TITS.2023.3334976
https://doi.org/10.5505/pajes.2023.49769
https://doi.org/10.1287/trsc.2013.0490
https://doi.org/10.1016/j.tre.2014.09.003
https://doi.org/10.1016/j.ejor.2015.01.049
https://doi.org/10.1016/j.ejor.2016.01.038
https://doi.org/10.1016/j.trc.2016.01.013
https://doi.org/10.1155/2017/8509783
https://doi.org/10.1016/j.trb.2017.02.004
https://doi.org/10.1016/j.cor.2018.06.019
https://doi.org/10.1007/s40890-018-0063-3
https://doi.org/10.1016/j.eswa.2020.113714
https://doi.org/10.36001/phmconf.2020.v12i1.1281
https://doi.org/10.1016/j.scs.2021.102883
https://doi.org/10.1016/j.cor.2020.105060
https://doi.org/10.1016/j.cor.2021.105527
https://doi.org/10.3390/en15010285
https://doi.org/10.3390/su14031645
https://doi.org/10.1016/j.tre.2022.102917
https://doi.org/10.1155/2023/1200526
https://doi.org/10.3390/app13169190
https://doi.org/10.1016/j.asoc.2023.110025
https://doi.org/10.3390/app15020761
https://doi.org/10.1016/j.tre.2011.08.001
https://doi.org/10.1287/trsc.1090.0301
https://doi.org/10.1016/j.eswa.2013.07.107
https://doi.org/10.3390/su16083439


Appl. Sci. 2025, 15, 4703 27 of 27
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53. Aslan Yıldız, Ö.; Sarıçiçek, İ.; Yazıcı, A. A Reinforcement Learning-Based Solution for the Capacitated Electric Vehicle Routing

Problem from the Last-Mile Delivery Perspective. Appl. Sci. 2025, 15, 1068. [CrossRef]
54. Electric Vehicle Routing with Charging Stations from The Perspective of Customer Satisfaction. Available online: https://www.

youtube.com/watch?v=Jryn4s9A6Os (accessed on 17 February 2025).
55. Lu, F.; Du, Z.; Wang, Z.; Wang, L.; Wang, S. Towards enhancing the crowdsourcing door-to-door delivery: An effective model in

Beijing. J. Ind. Manag. Optim. 2025, 21, 2371–2395. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/01605682.2024.2446655
https://doi.org/10.3390/systems12060205
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1007/s10732-018-9377-x
https://doi.org/10.1016/j.ejor.2020.10.045
https://doi.org/10.1016/j.cor.2022.105903
https://doi.org/10.1016/j.ejor.2024.05.033
https://doi.org/10.1016/j.cor.2005.09.012
https://doi.org/10.1016/j.cor.2011.11.016
https://doi.org/10.1016/j.cor.2019.07.012
https://doi.org/10.1080/19427867.2022.2057899
https://doi.org/10.1016/j.cie.2022.108580
https://data.mendeley.com/datasets/7vjzvxh72d/1
https://data.mendeley.com/datasets/7vjzvxh72d/1
https://doi.org/10.3390/app15031068
https://www.youtube.com/watch?v=Jryn4s9A6Os
https://www.youtube.com/watch?v=Jryn4s9A6Os
https://doi.org/10.3934/jimo.2024175

	Introduction 
	Related Works 
	Studies on Capacitated Electric Vehicle Routing Problem with Time Windows 
	Studies on ALNS for CEVRPTW 

	Materials and Methods 
	Problem Description 
	Proposed Adaptive Large Neighborhood Search 
	Initial Solution 
	Neighborhood Solutions 
	Removal Operators 
	Insertion Operators 
	Local Search 


	Experimental Results 
	Validation of the Adaptive Large Neighborhood Search 
	Trade-Offs Between Cost-Oriented and Customer-Oriented Solutions 
	Evaluation Perspective from Fleet Management 

	Conclusions and Future Works 
	References

