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Abstract: In recent years, electric vehicles have become increasingly widespread, both
in the logistics sector and in personal use. This increase, together with factors such as
environmental concerns and government incentives, has brought energy consumption and
range estimation issues to the forefront. In this study, the energy consumption of an electric
cargo vehicle under different speed and load conditions is examined with an experimental
and data-driven approach, and then used for range estimation. The raw data collected
from the vehicle on the selected ~2 km route in Eskisehir Osmangazi University campus
are combined into per-second samples with time synchronization and data cleaning. The
route is divided into average of 150 m segments, and variables such as slope, energy
consumption, and acceleration are calculated for each segment. Then, the data are used to
train various machine learning models, such as Extra Trees, CatBoost, LightGBM, Voting
Regressor, and XGBoost, and their performances regarding energy consumption-based
range estimation are compared. The findings show that driving dynamics such as high
speed and sudden acceleration, as well as road slope and load conditions, significantly
shape the energy consumption and thus the remaining range. In particular, Extra Trees
outperforms other machine learning models in terms of metrics such as R2, RMSE and,
MAE, with a reasonable computational time. The results provide applicable guidance in
areas such as route optimization, smart battery management, and charging infrastructure
to reduce range anxiety and increase the operational efficiency of electric vehicles.

Keywords: electric vehicle; energy consumption; range estimation; machine learning;
logistics; road gradient; data analysis

1. Introduction
The transportation sector contributes significantly to greenhouse gas emissions. Fossil

fuel vehicles have been recognized as one of the biggest contributors to climatic pollution,
accounting for 23% of total energy-related CO2 emissions [1]. Technological advances,
environmental concerns, and government incentives have driven a significant increase in
the adoption of electric vehicles, both for personal use and in logistics. All over the world,
governments and authorities are working on strategies that will allow for a faster take-up
of electric vehicles, along with enhancements in the charging facilities available [2].

An advantage of electric vehicles is they do not emit greenhouse gases or other
pollutants when they are in operation. This will inevitably help to minimize the damage
to the climate imposed by transportation as a whole [3]. Moreover, if electric vehicles are
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fuelled by renewable sources of energy, this would decrease the transportation sector’s
adverse effects on the environment even further [4]. Adopting e-vehicles comes with more
than just environmental perks. Economically, it can help to save operating costs for both
consumers as well as businesses. As electric vehicles do not involve any mechanical parts
and oil changing, these vehicles do not need as much service as vehicles using internal
combustion engines. In addition, the cost of electric vehicles is relatively less volatile
than the prices of gasoline, which enables better budgeting [5]. The growth in the electric
vehicle industry is driving economic and innovation growth in the field of automobile
manufacturing, battery development, and charging station development. In addition to
these economic benefits, environmental benefits have led to the rapid spread of electric
vehicles in various transportation sub-sectors.

Switching to electric vehicles offers numerous economic and environmental benefits.
However, the transition to electric vehicles also brings with it several problems that need to
be worked on. Short driving ranges due to battery capacity limitations and limited charging
infrastructures are causing range anxiety among drivers [6]. Range anxiety becomes
especially evident on long journeys, and makes planning difficult for users. It can become
even worse due to a change in driving range caused by factors affecting energy consumption
that are beyond the driver’s control. Therefore, accurate estimation of the range constitutes
an important research topic in order to increase user confidence and optimize operational
activities in electric vehicles. On the other hand, high-accuracy range estimation in the
logistics sector helps to reduce costs by positively affecting energy efficiency, productivity,
and route planning quality as it ensures optimum use of existing resources. In addition
to this, it will inform infrastructure planning—in particular, the strategic placement of
charging stations—and underpin the development of smart battery management.

In recent years, various studies have begun to be published in the literature on the
range estimation of electric vehicles. Range estimation is a rather complex phenomenon
that is directly related to energy consumption and is influenced by multiple factors that
are related or unrelated to each other. Vehicle speed and acceleration are the primary
determinants of energy consumption; higher speeds and sudden accelerations increase
aerodynamic drag and mechanical load, respectively [7]. The road gradient plays an
important role in energy consumption, due to the gravitational force acting on the vehicle.
Uphill ascending scenarios require more energy, while descending scenarios can provide
energy recovery, thanks to regenerative braking [8]. In addition to the weight of the
vehicle, the weight of the passengers and the load carried also have a significant impact
on the energy consumption of electric vehicles, especially during acceleration and uphill
driving [9]. Vehicle speed, acceleration, road slope, and load are factors that have been
addressed in separate studies in relation to energy consumption. However, how these
interact—especially for short-haul segments—remains poorly understood. To address these
challenges and advance the understanding of factors influencing energy consumption
and range estimation in electric vehicles, this study adopts a focused approach on short-
distance logistics, providing valuable insights for both theoretical frameworks and practical
applications. The main objective of the study focuses on the range estimation of electric
vehicles based on the energy consumed in real-life conditions, by systematically examining
the factors affecting energy consumption. The dataset used in this study is created using a
real electric cargo delivery vehicle. The main contributions of this study can be summarized
as follows:

• It focuses on the energy consumption and remaining range estimation for a small
three-wheeled electric vehicle designed for use in last-mile delivery logistics. In this
context, it aims to determine the critical role of such vehicles in energy management
and to increase the sustainability of logistics operations.
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• In order to systematically observe the effects of slope, speed, load, and acceleration
factors on energy consumption, an experimental design is established. The effects of
particular factors that cause energy consumption are examined.

• Experiments are carried out with an electric vehicle used in real-life cargo delivery.
This implementation increases the validity of the research by verifying the designed ex-
periment in real-life conditions and helping to observe the effects of driving dynamics
and environmental factors.

• The effects of slope, speed, load, and acceleration factors on energy consumption are
statistically analyzed. The separate effects of each factor are explained, and ideas
about the vehicle’s energy consumption and the estimation of the remaining range
are presented.

• As one of the rare studies in the literature investigating the effect of the characteristics
of small-scale regions on energy consumption, it emphasizes the effect of local factors
on electric vehicle performance.

• In this context, the energy consumption analysis is carried out by focusing on shorter
road segments with an average length of 150 m. This approach allows the dynamic
changes in driving conditions and their immediate effects on energy consumption
to be realized more precisely. For each road segment, the energy consumption is
calculated using the State of Charge (SoC) value of the battery at the starting and
ending points of the road segment. The relationship of energy consumption with
specific factors in each segment provides valuable information about how these factors
affect energy consumption and range. The remainder of the paper is organized as
follows: Section 2 presents the related works, focusing on factors and algorithms used
in the prediction of energy consumption and range estimation of electric vehicles.
The dataset and the methodology used in the study are given in Section 3. Section 4
presents the experimental results and identifies the factors affecting the prediction
of range. Finally, the discussions, conclusions, and suggestions for future work are
presented in Section 5.

2. Related Studies
Concerns about fossil fuel depletion and increasing air pollution have led to an increase

in the search for alternatives to internal combustion engine (ICE) road transport [10]. This
has driven the increasing popularity of electric vehicles (EVs). However, the actual driving
range of EVs is often significantly shorter, due to fewer charging facilities and longer
charging times compared to ICE vehicles. As there are fewer EV charging points than
fuel stations, EV drivers are constantly worried about arriving at their destination on
time, making range anxiety inevitable [11]. Therefore, accurately determining how far an
EV can travel on a single charge is important for EV drivers. A review of the literature
shows that changes in driving conditions, driver behaviour, ambient conditions, and
battery health lead to difficulties in accurately estimating the remaining range in electric
vehicles. Existing studies highlight the need for advanced prediction models and real-
time data integration to improve range prediction accuracy and develop effective battery
management strategies in response to dynamically changing environmental conditions.
Vaz et al. propose a multi-objective optimization technique. The technique shows the
ideal driving speeds corresponding to the estimated range for the driver by increasing the
electric motor efficiency and reducing the power consumption [12]. In the model-based
approach, where the driving profile and power consumption are estimated, the remaining
range estimation is achieved with an error of 2.52% [13]. In the study of Sarrafan et al.,
the researchers use environmental and drive system loss factors to estimate the State of
Charge (SoC), and thus the EV range [14]. However, the SoC calculation is found to be
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more accurate, with only 0.5% difference between the estimated and measured value at the
destination. The effect of driving efficiency on SoC is studied by Helmbrecht et al. [15]. They
observe that customers with a lower SoC tend to change their driving habits to maintain
the SoC.

In physical models, accurate measurements of many parameters, such as air resistance,
rolling resistance, and slope force, are required. The variability of these parameters under
different vehicle types and driving conditions limits the accuracy of the models [16–19].
Model-based range prediction is specific to EVs and requires prior knowledge of the battery.
In recent years, data-driven machine learning-based approaches have been widely used to
directly estimate the remaining driving range of electric vehicles [20]. Therefore, a more
generalized range prediction algorithm that can help with different driver characteristics
can be developed using data-driven machine learning algorithms. ML methods can learn
complex and nonlinear relationships over data, independently of physical principles. In
this way, sudden changes in driving conditions and the effects of environmental factors can
be captured more accurately [21]. ML methods offer a more flexible structure compared to
physical models that remain limited due to high data requirements and fixed assumptions.
They can integrate dynamic factors such as road conditions into the model by learning
from large and heterogeneous datasets. Interpretive techniques such as Shapley Additive
exPlanations (SHAP) can show which variables are most effective in prediction, increasing
the reliability of the model and its usability in practice. Data-driven algorithms can be
modelled to accommodate different factors that may affect range consumption. Thus, they
can be applied in situations where accurate mathematical modelling of the EV battery is
difficult [22]. They also show great scalability, due to their robustness to noise and lower
prediction error in range [23]. On the other hand, there are extensive studies in the literature
on statistical, predictive, and causal analysis of factors affecting energy consumption under
different driving conditions. For example, Huang et al. examined the factors affecting en-
ergy consumption of electric vehicles (EVs) in statistical, predictive, and causal dimensions.
They investigated the role of these factors in different trip categories with the double-biased
machine learning (DML) approach [24]. Gurusamy et al. focused on predicting the energy
consumption of electric two-wheelers (E2Ws) using automatic Machine Learning (autoML)
libraries. They showed that ensemble-based models increased the prediction accuracy, and
especially, the PyCaret-based stacked ensemble model exhibited the best performance [25].
Yılmaz et al. proposed a transformer-based method for estimating the SoC. The study
demonstrated the remarkable effectiveness of the transformer model for SoC prediction
across various datasets [26]. Lee and Wu developed a big data framework to improve
the driving range prediction of EVs using a single battery cell [27]. Sarrafan et al. used
web-based data and driving behaviours for range estimation, and found an estimation
error of 1% [28]. In the data-driven approach using the fuzzy logic classifier using battery
parameters and consumed power, an error range of 20% was estimated [29]. Rhode et al.
propose a data-driven approach for range estimation that adapts to changing conditions in
real time, without relying on specific vehicle parameters [30]. Zhao et al. propose a hybrid
machine learning algorithm combining XGBoost and Light Gradient Boosting Machine
(LightGBM) methods, which can predict the remaining driving range for EVs using real
driving data [31]. They find that the hybrid model reduces the prediction errors by an
average of 20 km compared to traditional methods, and achieves an average absolute error
of 10 km in range prediction. Tian et al. present a model combining and dimensionality
extension approach using the eXtreme Gradient Boosting (XGBoost) technique to accurately
predict the remaining range of electric vehicles [32]. The XGBoost model demonstrates
superior performance compared to other machine learning methods by achieving a 15%
increase in prediction accuracy. Zamee et al. propose a method for intelligent charging
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load estimation of EVs [33]. This method divides EVs into four categories: electric private
cars, electric public transport buses, electric car rentals, and battery-powered vehicles for
delivery. The system establishes charging power calculation models for various types of
EVs and studies probabilistic models of load-influencing factors. Based on the estimated EV
ownership, initial charging condition, and charging duration, the approach calculates the
charging demand of EVs using Monte Carlo simulation. The study found that EV rentals,
on average, increased their range by 50 km after charging to 80% SoC. Dong et al. propose
a cascaded neuromorphic computation system that includes a Gated Recurrent Unit (GRU),
an attention circuit module, and a Kalman filter to increase the speed and accuracy of SoC
estimation [34]. The method both increases the accuracy and reduces the computation
time by approximately 16 to 20 times. Selvaraj and Vairavasundaram propose a machine
learning model approach based on Bayesian optimization, which considers environmental
and in-vehicle factors to increase accuracy in SoC estimation [35]. The proposed model
with high performance has a prediction error below 1%. Mishra et al. review machine
learning models for range estimation in their study [36]. They emphasize the importance of
data pre-processing techniques and model selection for accurate estimations. They observe
that the use of algorithms such as Deep MLP and Random Forest provide higher accuracy
in range estimations.

When the literature is examined, it can be seen that slope, acceleration, speed, and
load factors are considered in most of the studies on energy consumption and range
prediction (Table 1).

Table 1. Factors examined in related works.

RW Slope Acceleration Speed Load Model

Topić, Škugor, and Deur, 2019 [37]
√ √

DD
Varga, Sagoian, and Mariasiu 2019 [38]

√ √ √ √
DD

López and Fernández, 2020 [39]
√

PM
Miri, Fotouhi, and Ewin, 2021 [40]

√ √ √ √
PM, DD

Ullah, Liu, Yamamoto, Zahid, and Jamal, 2021 [41]
√ √ √

DD
Kocaarslan et al., 2022 [42]

√ √ √ √
PM

Sun, An, Geng, and Geng, 2023 [43]
√ √

PM
Achariyaviriya et al., 2023 [44]

√ √ √
DD

Yılmaz and Yagmahan, 2024 [45]
√ √ √

DD
Wang et al., 2024 [46]

√ √
DD

Gioldasis, Christoforou, and Katsiadrami, 2024 [47]
√ √

DD
Kozłowski, Wiśniowski, Gis,

Zimakowska-Laskowska, and Borucka, 2024 [48]
√ √

PM

Our work
√ √ √ √

PM, DD
Our study addresses related factors. In addition, the factors are examined with both physical model (PM) and
data-driven (DD) methods.

3. Materials and Methods
The increasing use of electric vehicles in the logistics sector has increased the impor-

tance of studies on the energy consumption and range of cargo vehicles. In this context, a
new method is proposed to examine the factors affecting the range of an electric vehicle
by implementing different scenarios. Scenarios were created in a real test environment
and using data collected from an electric cargo delivery vehicle. The flow diagram of the
proposed method is shown in Figure 1.
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Figure 1. The flow diagram of the proposed method.

The research methodology presented in Figure 1 consists of three main phases: scenario
definition, data collection and pre-processing, and analysis and validation. In the first
phase, routes with different slope conditions are created at Eskisehir Osmangazi University
Meselik Campus. The conditions to be tested, namely different speeds, different slope
values, different temperature conditions, and different load cases, are determined. In the
second phase, vehicle sensor data are collected, synchronized, and cleaned on a per-second
basis. Routes are divided into segments based on slope, the appropriate slope value is
assigned to each segment, and the data are normalized. In the last phase, the correlations
of the factors affecting energy consumption are examined with the obtained dataset, energy
consumption and range estimates are made with machine learning (ML) models, and the
performances of these models are evaluated.

3.1. Scenario Definition

In this study, the effects on energy consumption and range were analyzed by collecting
data under different speed, slope, weather, and load conditions from a Musoshi brand
Pop-Up Mini electric vehicle. The parameters of the vehicle are given in Table 2.

Table 2. Musoshi Pop-Up Mini parameters.

Description Value

Vehicle Mass 700 kg
Payload Capacity 400 kg

Top Speed 50 km/h
Acceleration 1 m/s2

Range 120 km
Battery Capacity 15.6 kW/h

Front Surface Area 2.55 m2
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The experiments were carried out on a route approximately 2 km in length, with
slope values varying between 0% and 9%, in Eskisehir Buyukdere Neighbourhood, where
Eskisehir Osmangazi University Meselik Campus is located (Figure 2). The reason for
choosing this route was that different slopes and road conditions are presented in the same
area, thus enabling data appropriate for real driving conditions to be obtained. Within the
scope of the tests, the route was covered at an average speed of 15, 25, and 35 km/h in both
the direction of travel and return. In addition, the vehicle was tested under two different
load conditions (empty and 350 kg-loaded) for each speed option, and the tests were
conducted in both the winter and summer seasons. In this way, the data for each speed and
load combination were recorded separately; as a result, a total of 24 different experimental
data files were obtained. These experiments were performed to minimize possible sensor
errors and variations due to environmental variables. The experiments allowed for the
systematic examination of changes in energy consumption and range estimation under
various driving conditions.
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Figure 2. Planned route.

While naming these routes, intelligent naming was used according to the speed, load,
and direction. The numbers 15, 25, and 35 represent speeds, L represents loaded, and U
represents unloaded. The letters M and C represent the direction towards The Faculty of
Engineering and Architecture (represented as AB) and the direction towards The Center
of Intelligent Systems Application Research (represented as BA), respectively. This wide
range of data obtained provided the opportunity to examine in detail the performance and
energy consumption of the vehicle under different conditions, in terms of variables such
as speed, load, and slope. Thus, a comprehensive evaluation could be made in terms of
driving dynamics and energy efficiency.
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3.2. Data Collection and Pre-Processing

In the raw data collection phase, different sensor data, such as speed, acceleration,
location, and SoC, that came from the vehicle were first converted to a coherent structure
by fitting them into a single time axis. Since recording from sensors at different frequencies
can lead to time differences between datasets, an approach of combining data for each
second was adopted. If there were multiple measurement points corresponding to the
same second, the numerical values were averaged, while for textual values, the latest data
were used. In this way, the resulting cleaned data created a coherent time series, where all
sensor information was included in a single line for each second. Since empty or erroneous
measurements can occur due to sensor failure or GPS signal insufficiency, these points
were filtered to minimize noise during the analysis process. At the same stage, outlier
analysis was also performed. Abnormal acceleration, braking, or SoC change rates that
were consistent with real driving conditions were kept in the dataset. Parts thought to
have measurement errors were eliminated. Altitude information related to the location was
added to the data table, converted into a time series for each second, and the route slopes
were calculated with higher accuracy. The altitude information was obtained via Google
Elevation API. Slope values of the road ranging from 0 to 9% could be accurately modelled.
In the slope calculation, the Haversine formula (Equation (1)) was used to find geographical
distances; this formula converts global coordinates (latitude-longitude) to radians, and
gives the horizontal distance between two points as a metre-level approximation.

distance = 2r arcsin

(√
sin2

(
∆∅
2

)
+ cos(∅1)cos(∅2)sin2

(
∆L

2

))
(1)

where r is the radius of the Earth (about 6,371,000 m); ∅1, ∅2 are the latitude angles of the
first and second points in, radians; L1, L2 are longitude angles of the first and second points,
in radians; ∆∅ is the difference between ∅2 and ∅1; and ∆L is the difference between L2

and L1.
The slope percentage, determined using the obtained horizontal distance and the

altitude difference between the same two points, is calculated on a segmental basis along
the route.

slope =
∆altitude

∆horizontal distance
× 100(%) (2)

Initially, different segment lengths of approximately 50, 75, 100, 150, 200, and 250 m
were tried, but the turns of the road and short-term slope changes caused lower performance
in the machine learning models. The best-performing models for different segment lengths
and their performance metrics are given in Table 3.

Table 3. Performances of models on different segment lengths.

Segment Length Best Model R2 MAE RMSE

50 m CatBoost 0.88 1.59 2.23
75 m Extra Trees 0.92 1.70 2.44
100 m CatBoost 0.93 1.95 2.74
150 m Extra Trees 0.96 2.10 3.02
200 m Extra Trees 0.93 3.81 5.01
250 m Extra Trees 0.92 3.32 5.02

When segments of approximately 150 m were used, the effect of slope transitions on
energy consumption could be observed more clearly, and the data became more meaningful.
Nevertheless, in special cases such as steep slope changes or long straight sections, the
segment lengths were kept flexible (Figure 3).



Sustainability 2025, 17, 3488 9 of 23

Sustainability 2025, 17, x FOR PEER REVIEW 9 of 24 
 

150 m Extra Trees 0.96 2.10 3.02 
200 m Extra Trees 0.93 3.81 5.01 
250 m Extra Trees 0.92 3.32 5.02 

When segments of approximately 150 m were used, the effect of slope transitions on 
energy consumption could be observed more clearly, and the data became more mean-
ingful. Nevertheless, in special cases such as steep slope changes or long straight sections, 
the segment lengths were kept flexible (Figure 3). 

 

Figure 3. Road segments. 

In the segmented version of the route, segments with a maximum slope of 1% were 
considered flat, and are shown in green. Segments with slopes between 1% and 4% were 
considered mild, and are shown in yellow. Slopes over 4% were considered high, and are 
shown in red. Energy consumption was calculated from the decrease in the SoC data, 
showing the vehicle’s battery charge level as a percentage (Equation (3)): 𝐸consumption = BatteryCap ×  (SoCstart − SoCend) (3)

where BatteryCap (15,600 Wh) represents the nominal battery capacity of the vehicle and 
SoC indicates the percentage of charge of the battery. In the formula, the difference be-
tween the SoC values measured at the beginning (SoCstart) and the end (SoCend) is mul-
tiplied by the battery capacity to calculate the total energy consumed (Wh). Since the bat-
tery charge level can increase during regenerative breaking, negative energy consumption 
moments are also included in the dataset. Using the vehicle speed, the acceleration can be 
calculated from the difference between two time points. Positive acceleration corresponds 
to acceleration, and negative acceleration corresponds to braking or deceleration. The total 
mass of the vehicle is kept in the total mass column in the data table, according to the 
scenarios where it operates in an empty state or with an additional load of 350 kg. In ad-
dition, the SoC and acceleration values corresponding to each second are recorded to-
gether with the segment and slope information to which they belong. In this way, it is 
possible to examine the driving characteristics along the route from a holistic perspective. 
Thus, critical parameters, such as location, energy consumption, speed, acceleration, and 
load status, are combined in a single dataset. In the last stage, all variables were normal-
ized between −1 and 1 to fit the positive and negative values that could occur in either the 
energy consumption, slope, or acceleration data at the same scale. For example, negative 
energy consumption measurements in processes such as regenerative braking, or extreme 
values that occurred during sudden acceleration-braking moments, were given equal 
weight with other variables in the modelling stage, thanks to this normalization. After the 
segmentation process, physically meaningless values are encountered for a single 

Figure 3. Road segments.

In the segmented version of the route, segments with a maximum slope of 1% were
considered flat, and are shown in green. Segments with slopes between 1% and 4% were
considered mild, and are shown in yellow. Slopes over 4% were considered high, and
are shown in red. Energy consumption was calculated from the decrease in the SoC data,
showing the vehicle’s battery charge level as a percentage (Equation (3)):

Econsumption = BatteryCap × (SoCstart − SoCend) (3)

where BatteryCap (15,600 Wh) represents the nominal battery capacity of the vehicle and
SoC indicates the percentage of charge of the battery. In the formula, the difference between
the SoC values measured at the beginning (SoCstart) and the end (SoCend) is multiplied
by the battery capacity to calculate the total energy consumed (Wh). Since the battery
charge level can increase during regenerative breaking, negative energy consumption
moments are also included in the dataset. Using the vehicle speed, the acceleration can be
calculated from the difference between two time points. Positive acceleration corresponds
to acceleration, and negative acceleration corresponds to braking or deceleration. The
total mass of the vehicle is kept in the total mass column in the data table, according to
the scenarios where it operates in an empty state or with an additional load of 350 kg.
In addition, the SoC and acceleration values corresponding to each second are recorded
together with the segment and slope information to which they belong. In this way, it is
possible to examine the driving characteristics along the route from a holistic perspective.
Thus, critical parameters, such as location, energy consumption, speed, acceleration, and
load status, are combined in a single dataset. In the last stage, all variables were normalized
between −1 and 1 to fit the positive and negative values that could occur in either the energy
consumption, slope, or acceleration data at the same scale. For example, negative energy
consumption measurements in processes such as regenerative braking, or extreme values
that occurred during sudden acceleration-braking moments, were given equal weight with
other variables in the modelling stage, thanks to this normalization. After the segmentation
process, physically meaningless values are encountered for a single segment in the Total
Energy Consumption column. This situation is due to the fact that the selected test route
is loop-shaped, and the start and end points were sometimes mixed together during the
segmentation process. Therefore, outliers that emerged in segment-based analyses and
could be encountered in real driving scenarios were kept; however, the errors caused by
the proximity of the start points of the first segment and the end points of the last segment
were eliminated, thus minimizing the negative impact of outliers on the model training
process and obtaining more consistent and realistic energy consumption estimates.
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Finally, the resulting dataset gains a structure that is synchronized both temporally
and geographically, including columns such as Latitude, Longitude, Altitude, Vehicle
Speed, SoC, Energy Consumption, Total Mass, Acceleration, Segment, Slope and Range.
This comprehensive data structure allows for detailed analysis of many topics, from the
effect of slopes on energy consumption along the route, to acceleration behaviour. In this
way, the dataset forms the basis for subsequent modelling or optimization studies.

3.3. Analysis and Validation

The analysis of factors for the estimation of energy consumption-based range predic-
tion is defined in following subsection. The proposed method for the validation of range
estimation is described in Section 3.3.2.

3.3.1. Analysis of Factors for Energy Consumption

The main purpose of this stage is to better understand the effects of variables such as
slope, speed, acceleration, and load status on energy consumption, and therefore on range.
To provide an overview of the dataset, statistical summaries (mean, median, standard
deviation) are calculated, and bar and scatter plots are examined to observe the integrity
of the data structure. Thus, the factors that are more decisive for energy consumption
and range are understood both on a segment basis and at the level of the general dataset.
Although the results are evaluated from a detailed statistical perspective in this Section,
the majority of the numerical experimental outputs will be presented in the Experimental
Results Section. The implementation was carried out in Python 3.10.16 environment, using
libraries such as Pandas 2.2.3, NumPy 1.26.4, Matplotlib 3.10.1, and Seaborn 0.13.2.

Descriptive statistics, such as the mean, median and standard deviation of variables,
were calculated. Afterwards, a heatmap consisting of Pearson correlation coefficients
was created, and the relationships between the variables were interpreted. For example,
the effect of slope on energy consumption was supported by the correlation coefficient
r ≈ 0.83. To determine if these coefficients were statistically significant, p-values were then
computed (Table 4).

Table 4. Type II sum of squares table for regression model.

Variable PR (>F)

segment_length 0.3404
slope 0.0

avg_vehicle_speed 0.1169
avg_Acceleration 0.0
avg_Total_Mass 0.0

avg_Temperature 0.0002

In the above table, F is the F-statistic and PR (>F) is the p-value. Variables with p-values
below 0.05 (slope, average acceleration, total mass, and temperature) are statistically
significant, while segment length and average vehicle speed are not individually significant.
After examining the Pearson correlation coefficients, the effect of each variable on energy
consumption was evaluated by keeping all the other variables constant or within a certain
range. Thanks to this approach, the extent to which each variable had an effect on its own
was revealed more clearly, and a more detailed insight into the general behaviour of the
model could be obtained.

3.3.2. Validation of Range Estimation

The proposed energy consumption-based range estimation method uses various
machine learning methods, and a physical energy consumption model [16], which is taken
as a reference. This experimental approach allowed us to evaluate to what extent both the
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traditional physical model and various ML methods accurately modelled difficult driving
conditions. This model evaluates the vehicle’s energy consumption step by step, and
continuously updates the total energy content. First, the vehicle’s kinetic energy (depending
on its speed), potential energy (depending on its altitude), and rotational inertia energy of
the internal rotating masses are calculated. This trio represents the vehicle’s current energy
status (Equation (3)).

Eveh[k] = Ekin[k] + Epot[k] + Eint,rot[k] (4)

Eveh[k] =
m
2

v2[k] + mgh[k] +
Jint
2

v2[k] (5)

The vehicle’s energy status at the next time step is updated based on the energy from
the previous step (Equation (6)). Here, energy gain or loss becomes important. If the
vehicle is descending a hill or braking, regenerative braking is activated, and can return a
certain amount of energy to the battery. However, if the vehicle accelerates, climbs a hill, or
struggles with resistance forces, energy is consumed from the battery.

∆Egain[k] = Eveh[k + 1]− Eveh[k]− ∆Eloss[k] (6)

Energy losses are caused by various resistances. Air resistance causes energy con-
sumption in direct proportion to the vehicle’s speed and aerodynamic properties. Rolling
resistance is another loss item, resulting from the interaction of the tyres with the surface.
The curve resistance that occurs when cornering, and fixed consumers integrated into the
vehicle (such as headlights, air conditioning), are also among the factors that increase en-
ergy consumption. Each resistance item is calculated separately in the model (Equation (7)),
then added together and evaluated as the total loss.

∆Eloss[k] = ∆Eair[k] + ∆Eroll[k] + ∆Ecurve[k] + ∆Econst[k] (7)

∆Eair[k] =
1
2
ρairAvehcwv2[k]|∆s[k]| (8)

∆Eroll[k] = crollmg|∆s[k]| (9)

∆Ecurve[k] = crad
mv2[k]

R[k]
|∆s[k]| (10)

∆Econst[k] = Pconst∆t (11)

In the final step, the amount of energy gained or lost is reflected in the vehicle’s battery
level. If the vehicle has gained energy (for example, by regenerative braking downhill),
energy is added to the battery according to a certain efficiency rate. If the vehicle has
consumed energy, the battery energy is reduced again by a certain drive efficiency factor.
Thus, a more realistic estimate is obtained by considering energy fluctuations during
driving, physical variables, and efficiency elements.

If ∆E_“gain” [k] > 0 (regeneration), the formula is as follows:

Ebat[k + 1] = Ebat[k] + ∆Egain[k]ηrecup (12)

If ∆E_“gain” [k] < 0 (consumption), the formula is as follows:

Ebat[k + 1] = Ebat[k] + ∆Egain[k]ηprop (13)

After the definition of the physical model, comprehensive experiments were performed
to compare the performance of different ML models. Among the candidate algorithms,
five models achieved particularly high accuracy rates, and the analysis is focused on these
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models. Extra Trees (Extremely Randomized Trees), an ensemble-based method, adds
variety to the model with the strategy of determining random split points. It can achieve
significant success by speeding up the prediction time in datasets with interactive variables,
such as speed, acceleration, and slope [49]. CatBoost is a model based on the gradient
boosting method, and is known for its structure that is sensitive to categorical variables
and order effects in the data. Each tree focuses on minimizing the error margin of the
previous model, and thus follows a training process that carefully considers the order in
the data to reduce the risk of overfitting [50]. The Voting Regressor approach is based on
training different regression models, such as CatBoost, Extra Trees, and LightGBM, on the
same dataset and combining the produced predictions. By using different model structures
together, it provides better performance, often exceeding the accuracy that a single model
can achieve on its own. XGBoost (eXtreme Gradient Boosting) is a gradient boosting
library enriched with optimization principles; it has become popular by providing both
high accuracy and short training time in large datasets, thanks to additional mechanisms
such as regularization and parallelization [32]. LightGBM is also a gradient boosting-
based library which reduces memory usage and increases training speed in large datasets
with its leaf-wise growth strategy. It is known for its high success rates, especially in
multi-dimensional feature spaces [51]. During the model training process, scikit-learn,
CatBoost, LightGBM, and XGBoost libraries are used. The dataset consists of 14698 rows,
and 80% of the dataset is separated for training and 20% for testing [52]; in addition,
5-fold cross-validation is applied to measure the general performance of each model
consistently. Hyperparameters such as the learning rate, number of trees, and maximum
depth are scanned and optimized with Bayesian optimization (Optuna). Optuna is a
Python-based and open-source hyperparameter optimization library that systematically
scans the parameter range using randomization and Bayesian strategies. In each trial, the
parameter selection is evaluated via the R2 value and the results are recorded; during this
process, the search range is gradually narrowed down using statistical methods such as
Tree-structured Parzen Estimators (TPE). Thus, the possible value range of the parameters
is effectively scanned, the performance of each trial is measured, and the best-scoring
parameter set is determined. With this process, basic parameters, such as the number
of estimators, maximum depth, and minimum sample split, are scanned across different
intervals; each iteration is evaluated using 5-fold cross-validation. In this way, it the aim
for the models to show both high accuracy and strong generalization ability. As a result of
experiments with different parameter combinations on different models, it was seen that
the Extra Trees model outperforms other models, based on metrics such as the R2, MAE,
and RMSE.

Finally, based on the information that the vehicle can reach a fully charged battery
range of 120 km, and the battery capacity is 15.6 kWh according to the factory data, the
process of estimation of the energy consumption during driving and the remaining range
estimation at the end of the drive is discussed in detail. First, the energy consumption
prediction is determined by the Extra Trees model. Then, how much of a SoC change the
energy consumption prediction from the model causes is calculated (Equation (14)).

SoCdifference =
Eestimated

Battery Capacity(wH)
× 100 (14)

Then, the SoC difference is subtracted from the initial SoC value, and the remaining
estimated SoC value is obtained (Equation (15)).

SoCestimated = SoCstart − SoCdifference (15)
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After determining the estimated SoC, the usable remaining energy is calculated as in
Equation (16):

Eusable = Battery Capacity(wH)× SoCestimated − SoCmin
100

(16)

where SoCmin indicates allowed minimum SoC.; here, it is accepted as zero.
Finally, the remaining range is calculated using Eusable and Enonlinear (Equation (17)):

Rangeremaining =
Eusable

Enonlinear
(17)

where Enonlinear indicates the average energy consumed per kilometre (Wh/km). The
coefficient Enonlinear is determined using the mean values for each average speed, mass,
and slope combination in the dataset.

Using the final SoC value calculated from the energy consumption estimated by the
model, the distance that the vehicle can travel during the remaining drive is realistically
estimated. This approach reveals both how much of the battery energy is consumed
and how much distance the vehicle can travel with the remaining SoC, in an integrated
manner. In this whole process, the effects of driving conditions, such as slope, high
speed, sudden acceleration, or loaded driving, on energy consumption are revealed more
clearly. Extra Trees’ ability to capture multi-dimensional variable interactions, CatBoost’s
strategy that considers the ordering feature in the data, LightGBM’s fast training structure,
Voting Regressor’s ensemble approach, and Random Forest’s robust decision tree model
provide more consistent energy consumption estimates under real driving conditions. This
approach provides more realistic predictions in areas such as route optimization and energy
management compared to traditional methods, improving both the user experience and
supporting accurate infrastructure planning.

4. Experimental Results
4.1. Analysis of Factors

In this study, different factors affecting the energy consumption of electric vehicles
(acceleration, mass, slope, and speed) were analyzed with experimental data, and estima-
tion studies were carried out with machine learning (ML) models, in line with the obtained
findings. The numerical reflections of these findings and comprehensive results regarding
the performance of the models will be discussed in detail. To understand the interactions
between variables more clearly, a heatmap was created, as seen in Figure 4. This map pro-
vides the opportunity to visualize how factors such as slope, speed, acceleration, and load
affect energy consumption at the level of mutual correlation. Then, variance analyses and
correlation studies were performed to determine whether the total energy consumption,
speed, slope, and acceleration variables create a statistically significant difference.

As seen in Figure 4, the data reflects the positive or negative linear relationship
between the variable pairs. In particular, the correlation of 0.83 between the slope and the
total energy consumption observed throughout the segment confirms how much the slope
is a determinant for energy needs. Similarly, the correlation value of 0.36 for acceleration
supports the fact that high acceleration significantly increases energy consumption. The
fact that the speed factor shows a more moderate correlation of 0.11 is also parallel to
our previous observations: speed has an effect, but not as strong as that of slope and
acceleration. Mass, on the other hand, influences energy consumption with a correlation of
0.20, exhibiting a positive relationship. The effect of temperature is observed to be quite low,
with a correlation value of 0.04. These relationships can guide machine learning models
in understanding which variables provide more information. Thus, the correlation matrix
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summarizes the interaction of all these parameters, and constitutes an important reference
point for artificial intelligence and machine learning methods in selecting input variables
and improving model performance.
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Low and negative acceleration values are associated with relatively low energy con-
sumption compared to when the vehicle is in braking or deceleration mode (Figure 5).
Especially during negative acceleration (braking), the net consumption level can be reduced
in some systems with the contribution of regenerative braking. On the other hand, when
the acceleration reaches positive and high values (>1 m/s2), a significant increase in energy
consumption is observed. The main reasons for this are the increased torque requirement
on the engine for fast acceleration, and the consequent drawing of more electric power. The
data confirm that high acceleration significantly increases energy consumption.
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With the increase in load, a visible increase in energy consumption is observed. Espe-
cially in the loaded state, there is a higher torque requirement, which causes the engine to
consume more energy. In addition, the increase in mass increases the friction and rotational
resistances, which are important factors affecting the energy consumption of electric vehi-
cles, and thus increase the energy consumption. Therefore, Figure 6 clearly shows that the
increase in total mass has a direct effect on energy consumption.
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In cases where a negative slope is observed, energy consumption remains at low
levels due to the vehicle going downhill, consumption can be further reduced thanks to
regenerative braking, and the total energy consumption can even be observed to be below
zero, and gains can be dominant (Figure 7). On the other hand, as positive slope values
increase, the need for power increases, as the vehicle has to work against gravity, and this
situation significantly increases the average energy consumption. Particularly high positive
slopes lead to the highest energy consumption values observed, revealing the significant
effect of the slope factor on vehicle performance.
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Energy consumption remains relatively limited at lower speeds, as air resistance and
friction forces are minimal. On the other hand, as speed increases, especially at speeds of
30 kph and above, factors such as aerodynamic drag and rolling resistance grow rapidly,
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causing the engine to draw more power (Figure 8). The results show that the significant
increase in energy consumption is in direct proportion to the increase in speed. Although
the trend observed in Figure 8 in electric vehicles for personal use is observed at higher
speeds, when the maximum speed of the Musoshi Pop-Up Mini vehicle (50 kph) used in
the experiments is considered, speeds of 30 kph and above are considered relatively high.
These inferences show that it may be advantageous to stay in the lower or medium speed
bands in terms of energy efficiency.

Sustainability 2025, 17, x FOR PEER REVIEW 16 of 24 
 

 

Figure 7. Relationship between slope and average energy consumption. 

Energy consumption remains relatively limited at lower speeds, as air resistance and 
friction forces are minimal. On the other hand, as speed increases, especially at speeds of 
30 kph and above, factors such as aerodynamic drag and rolling resistance grow rapidly, 
causing the engine to draw more power (Figure 8). The results show that the significant 
increase in energy consumption is in direct proportion to the increase in speed. Although 
the trend observed in Figure 8 in electric vehicles for personal use is observed at higher 
speeds, when the maximum speed of the Musoshi Pop-Up Mini vehicle (50 kph) used in 
the experiments is considered, speeds of 30 kph and above are considered relatively high. 
These inferences show that it may be advantageous to stay in the lower or medium speed 
bands in terms of energy efficiency. 

 

Figure 8. Relationship between average vehicle speed and average energy consumption. 

Contrary to expectations, lower energy consumption is observed in cold weather con-
ditions, and higher energy consumption in hot conditions (Figure 9). Technical examina-
tions reveal that the vehicle battery system only has heating pads, and no cooling mecha-
nism. Therefore, the battery exceeding its optimal operating temperature in hot weather 
causes additional energy consumption, and explains this unusual trend in the data. 

Figure 8. Relationship between average vehicle speed and average energy consumption.

Contrary to expectations, lower energy consumption is observed in cold weather
conditions, and higher energy consumption in hot conditions (Figure 9). Technical ex-
aminations reveal that the vehicle battery system only has heating pads, and no cooling
mechanism. Therefore, the battery exceeding its optimal operating temperature in hot
weather causes additional energy consumption, and explains this unusual trend in the data.
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When one factor was considered during the analysis, the other factors were kept
constant or selected from very small ranges in parts where the data were not sufficient.
Also, SHapley Additive exPlanations (SHAP) analyses reveal in detail which variables the
model is sensitive to, and how these variables guide the prediction (Figure 10).
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Figure 10. SHapley Additive exPlanations.

First, when the average absolute SHAP values are examined, it is seen that the slope
variable makes the highest contribution to the model output. Acceleration is the second
most important variable, and it is observed that especially the positive or negative change
in acceleration creates a significant change in the results of the model. It is noteworthy that
the SHAP value shifts to a positive and higher range with the increase in mass, which shows
that the prediction tends to increase in high-weight segments. Although temperature and
speed are in the middle ranks in terms of effect size, examination of SHAP distributions
shows that these features also play an important role in the model; in particular, the
interaction of speed and segment length can affect the model output both positively and
negatively. All these findings show that the machine learning model used has strong
sensitivity to factors such as slope, acceleration, and mass, and the result validates the
determined correlation coefficients. In addition, the Conditional Average Treatment Effect
(CATE) distributions estimated for average vehicle speed, slope, average acceleration, total
mass, segment length, and average temperature are shown in Figure 11.
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The histograms illustrate how changes in these variables affect energy consumption
(Wh). Notably, slope (~4.10 Wh) and average acceleration (~4.54 Wh) exhibit the highest
positive mean effects, indicating significant increases in energy consumption. By contrast,
the mean effects of average vehicle speed, total mass, segment length, and average temper-
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ature remain relatively small (under ~0.10 Wh). The results indicate that each factor must
be considered together to understand the complex dynamics of vehicle energy consump-
tion, and that holistic consideration of these factors is critical in model development and
practical applications.

4.2. Estimation of Energy Consumption and Range

Performance comparisons in terms of the R2, MAE, and RMSE values of the different
machine learning models, as well as their computational times, are listed in Table 5. It is
seen that tree-based ensemble methods capture complex interactions more successfully.

Table 5. Machine learning models performance table.

Model R2 Score MAE RMSE Training Time (s) Prediction Time (s)

Extra Trees 0.96 2.1 3.02 0.28 0.03
CatBoost 0.96 2.32 3.17 2.37 0.0

LightGBM 0.95 2.63 3.4 0.06 0.0
Voting Regressor 0.95 2.58 3.46 0.66 0.04
Random Forest 0.94 2.68 3.56 0.52 0.02

Stacking Regressor 0.94 2.74 3.59 3.39 0.02
Gradient Boosting 0.93 2.92 3.81 0.2 0.0

XGBoost 0.92 2.95 4.1 0.22 0.01
Polynomial Regression (Degree 3) 0.89 3.36 4.9 0.01 0.01

Decision Tree 0.87 3.97 5.32 0.01 0.0
AdaBoost 0.87 4.4 5.39 0.17 0.02

Linear Regression 0.81 4.91 6.46 0.01 0.0
Ridge Regression 0.81 4.91 6.46 0.0 0.0
Bayesian Ridge 0.81 4.94 6.47 0.0 0.0

Lasso Regression 0.81 4.94 6.47 0.0 0.0
ElasticNet 0.81 5.0 6.51 0.01 0.0

Huber Regressor 0.81 4.88 6.53 0.08 0.0
Support Vector Regressor (SVR) 0.8 4.6 6.68 0.01 0.01

Theil-Sen Regressor 0.74 4.88 7.59 0.75 0.0
K-Nearest Neighbors (KNN) 0.58 6.91 9.73 0.0 0.0

Extra Trees stands out with its high R2 score of 0.96 and low error values (MAE = 2.1,
RMSE = 3.02). While CatBoost and LightGBM models provide results close to Extra
Trees, Voting Regressor and Random Forest also reach satisfactory R2 values, at 0.95
and 0.94. On the other hand, methods like XGBoost and Polynomial Regression, and
some approaches such as Linear Regression, SVR, and KNN, have higher error metrics.
This situation highlights the potential of tree-based ensemble techniques to increase the
prediction performance for a problem where many factors are simultaneously active.

Among these tree-based methods, CatBoost stands out with its automatic target
coding and gradient-based boosting approach, especially in handling categorical variables.
XGBoost and LightGBM also attract attention with their computational efficiency, ability to
handle missing data, and high-precision splitting strategies. Extra Trees, on the other hand,
captured the complex interactions of the dataset more effectively with the flexible use of
random splitting points and tree depth. Low hyperparameter dependency and the ability
to capture variable interactions in the data in many random trees allowed it to reduce the
risk of overfitting and achieve a high R2 value. A scatter plot of the relationship between
the predicted energy consumption and the actual consumption is shown in Figure 12.

The fact that the points are mostly close to the diagonal axis shows that Extra Trees
makes predictions with high accuracy. The error distribution (prediction−actual) shows
that the errors are mostly concentrated in a narrow range, but there is a stretch in the right
tail (positive skewness, Skew = 2.32). Despite this, the fact that the prediction errors are
generally small confirms that the model fits the actual consumption values.
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In order to evaluate the statistical robustness of model performance, both 95% and
98% confidence intervals for R2 values were calculated with the bootstrap method. A
20% portion of the dataset, which included a total of 14698 samples, was separated for
testing, and bootstrap resampling was applied with 1000 iterations, based on the percentile
approach. As a result of this analysis, R2 = 0.955 and [0.932, 0.970] for the 95% confidence
interval, and R2 = 0.955 and [0.929, 0.972] for the 98% confidence interval. The narrow
confidence intervals produced by the bootstrap approach show that the high R2 value of
the model is not random, and its performance is stable.

After estimating the energy consumption, the calculations regarding the remaining
range of the vehicle, mentioned in Section 3.3.2, were completed, and then the differences
between the range estimates of the vehicle at the beginning of the route and the range
estimates at the end of the route were calculated and compared with the actual distance
travelled. In Table 6, the average speed, vehicle mass, actual distance, vehicle range, Extra
Trees estimations, and physical model calculations are given together for different route
scenarios. It is noteworthy that in various routes where the mass varies between 870 and
1220 kg and the speed is measured in the 14–35 km/h band, the average deviation of Extra
Trees from the actual range difference is mostly lower than that of the physical model. For
example, on route 15LM, the difference between the actual distance and the Extra Trees
estimate is approximately 2.48%, while the physical model deviates from the actual distance
by 19.43%. Similarly, on the same route, the vehicle range shows a difference of 12.89%
compared to the actual value.

Table 6. Range differences based on trips.

Route Mass (kg)
Actual

Distance
(m)

Average
Velocity

(kph)

Vehicle
Range

Difference
(m)

Estimated
Range

Difference
(m)

PM Range
Difference

(m)
Actual vs.
Vehicle

Actual vs.
Predicted

Actual
vs. PM

15LC 1195 2047 14.01 1860 1994 1551 9.14% 2.58% 24.22%
15LM 1195 1970 14.32 1716 2019 1587 12.89% 2.48% 19.43%
15UC 870 2047 14.72 1260 1935 1166 38.45% 5.49% 43.06%
15UM 870 1970 14.4 1176 1691 1153 40.30% 14.14% 41.45%
25LC 1220 2047 23.26 2143 2176 2034 4.70% 6.25% 0.62%
25LM 1195 1970 22.39 1956 2033 2166 0.71% 3.18% 9.96%
25UC 870 2047 25.63 1524 1736 1671 25.55% 15.19% 18.37%
25UM 870 1970 25.05 1512 1727 1784 23.25% 12.35% 9.42%
35LC 1220 2047 32.02 2295 2224 2626 12.14% 8.62% 28.28%
35LM 1220 1970 30.65 2364 2178 2828 20.00% 10.56% 43.57%
35UC 870 2047 34.32 1882 1997 2014 8.02% 2.45% 1.63%
35UM 870 1970 33.73 2076 1928 2306 5.38% 2.15% 17.07%

All these results show that machine learning methods can better express the multi-
dimensional factors (road slope, vehicle mass, driving dynamics, etc.) that play a role in the
energy consumption of electric vehicles, compared to physical approaches. However, the
physical model also provided reasonable prediction success, especially in low-speed and
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low-acceleration conditions; nevertheless, the deviation rate increased in difficult driving
scenarios where acceleration or mass was high, and the slope of the routes varied greatly.

Figure 13 is designed to compare the vehicle and estimated SoC and range values
obtained along short-distance route segments for the urban distribution vehicle. The
sections separated from Segment 1 to Segment 13 on the map visualize the effects of factors
such as slope, acceleration, speed, and payload on each segment. The SoC and range values
measured at the beginning are updated as the segments progress, and are presented side
by side with the estimated data at each stage.
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Although the machine learning-based model uses only basic factors, such as slope,
acceleration, speed, and payload, as inputs, it is striking that the actual and estimated data
are quite close. In particular, the similar decrease in SoC and range values along the route
proves that the method has sufficient accuracy. Despite the small deviations at the segment
end points, the overall picture indicates that the approach shows high performance in
battery charge level and possible range estimation. The findings show that if these four
factors—slope, acceleration, speed, and payload—are correctly modelled, the battery status
and expected range value can be reliably predicted. These results, obtained in urban
operations on routes divided into short-distance segments, constitute important evidence
that estimates close to real data can be provided. In this way, these results are expected to
contribute to the more effective execution of processes such as charging planning and fleet
management, especially in urban logistics applications.

5. Conclusions and Future Works
The increasing use of electric vehicles reduces greenhouse gas emissions, reduces

dependence on fossil fuels, and increases sustainability in the transportation sector. Range
prediction is important, not only for improved performance and customer experience, but
also to further the reliability of deployments in various real-world use cases, such as urban
deliveries or long-distance travel. In this study, the factors affecting the energy consumption
of electric vehicles (acceleration, slope, mass, speed, etc.) were examined in detail, and
various machine learning models were trained on the dataset of the proposed experiments,
to provide a more accurate estimation of energy consumption and, accordingly, driving
range. In particular, tree-based ensemble methods such as Extra Trees, CatBoost, Voting
Regressor, XGBoost, and LightGBM provided fast and high-accuracy estimates closest to
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real consumption values in various driving scenarios. The experiments conducted revealed
that the effect on energy consumption becomes more complex when dynamic factors
such as speed, acceleration, and slope interact with conditions such as vehicle mass. In
addition, comparisons have shown that machine learning approaches produce much more
accurate predictions under different driving conditions compared to traditional physical
models. The increase in prediction accuracy increases the ease of use and user confidence
of electric vehicles, by providing a more accurate calculation of driving range; thus, it
contributes to the elimination of range anxiety problems. This study provides insights, by
focusing on short-distance segments to optimize the range estimation for electric vehicles,
for both theoretical developments and practical applications. The methods presented in
the study provide guidance on route optimization and energy consumption reduction for
logistics operations.

In future studies, it is the goal to examine the effects of dynamic variables, such as
traffic density, waiting times at red lights, and the number of stops and starts, in order
to understand energy consumption under real driving conditions, in addition to factors
such as battery temperature, ambient temperature, and in-vehicle auxiliary systems (air
conditioning, heater, radio, etc.). It is planned to evaluate the effects of regenerative braking
and different driving styles on range estimation, due to low speed and frequent braking in
heavy traffic conditions. Thus, it is aimed to develop models based on real-time data flows
that incorporate dynamically changing conditions along the road, such as traffic density
and driver behaviour.
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