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Abstract: The growth of the urban population and the increase in e-commerce activities
have resulted in challenges for last-mile delivery. On the other hand, electric vehicles (EVs)
have been introduced to last-mile delivery as an alternative to fossil fuel vehicles. Electric
vehicles (EVs) not only play a pivotal role in reducing greenhouse gas emissions and air
pollution but also contribute significantly to the development of more energy-efficient and
environmentally sustainable urban transportation systems. Within these dynamics, the
Electric Vehicle Routing Problem (EVRP) has begun to replace the Vehicle Routing Problem
(VRP) in last-mile delivery. While classic vehicle routing ignores fueling, both the location
of charging stations and charging time should be included in the Electric Vehicle Routing
Problem due to the long recharging time. This study addresses the Capacitated EVRP
(CEVRP) with a novel Q-learning algorithm. Q-learning is a model-free reinforcement
learning algorithm designed to maximize an agent’s cumulative reward over time by
selecting optimal actions. Additionally, a new dataset is also published for the EVRP
considering field constraints. For the design of the dataset, real geographical positions have
been used, located in the province of Eskisehir, Türkiye. It also includes environmental
information, such as streets, intersections, and traffic density, unlike classical EVRP datasets.
Optimal solutions are obtained for each instance of the EVRP by using the mathematical
model. The results of the proposed Q-learning algorithm are compared with the optimal
solutions of the presented dataset. Test results show that the proposed algorithm provides
remarkable advantages in obtaining routes in a shorter time for EVs.

Keywords: capacitated vehicle routing problem; electric vehicle; charging stations; time
windows; last-mile delivery; reinforcement learning; q-learning

1. Introduction
In recent years, the global surge in e-commerce adoption has significantly influenced

distribution and last-mile delivery logistics. Last-mile delivery logistics denote the final
phase of a product’s delivery process, bringing it to the end customer. This stage has
become a focal point in logistics strategies due to its critical influence on customer satis-
faction, delivery speed, cost efficiency, and overall convenience. Over the past decade,
electric vehicles (EVs) have become prevalent in last-mile delivery services due to their
capacity to reduce greenhouse gas emissions, support renewable energy, and establish
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sustainable transportation systems. The benefits of EVs include decreased transportation
costs, enhanced energy efficiency, and significantly reduced pollutant emissions. With the
increasing use of EVs, the routing problem of these vehicles has emerged. The problem
is known as the Electric Vehicle Routing Problem (EVRP) in the literature. The primary
difference between the EVRP and the classic VRP is that vehicles have a battery as an
energy source, and the charge level decreases as the vehicle travels on the road. Conse-
quently, the EVRP places substantial emphasis on accounting for charging capacities and
the strategic placement of charging stations, as these factors are crucial for the efficient
operation of an EV fleet. A common constraint across all EVRP variations is the necessity to
visit a recharging station due to the limited driving range of electric vehicles. In traditional
Vehicle Routing Problems (VRPs), gas and diesel vehicles typically have longer ranges,
enabling them to travel hundreds of kilometers on a single refuel. Refueling needs arise
less frequently in daily route planning. Additionally, refueling durations generally range
between 5 and 10 min, which does not substantially impact the overall travel time of
the route. The widespread distribution of gas and diesel stations, extending from urban
centers to rural areas, further mitigates the necessity to incorporate refueling points within
route planning models. Conversely, within the framework of the EVRP, the integration
of charging stations into routes becomes imperative due to the limited battery capacity
and comparatively prolonged charging times of electric vehicles. Electric vehicles must
recharge at specific intervals to address range limitations, and the strategic placement of
charging stations directly influences this process. Consequently, the EVRP presents a more
complex modeling challenge than the classical VRP, as it necessitates considering charging
times and station visit decisions as additional variables in route planning. The decision to
include charging station visits emerges as a critical component in the context of the EVRP.

In this paper we address the Capacitated Electric Vehicle Routing Problem (CEVRP).
The CEVRP aims to address operational and environmental objectives by accounting for
electric vehicles’ limited driving range and load capacities. Including capacity constraints
facilitates more realistic industrial planning. CEVRP-based strategies promote environmen-
tal sustainability and reduce operational costs by optimizing routes for energy efficiency
and minimizing carbon emissions. A fleet management that produces fewer emissions
and considers energy efficiency supports corporate environmental policies. As a result, the
CEVRP has been increasingly adopted in today’s last-mile delivery operations, leading the
way for broader implementation of eco-friendly solutions in the logistics sector.

Since the VRP is an NP-hard problem and the EVRP is a generalization of the VRP, the
EVRP can equally be considered NP-hard in the strong sense [1]. Solution methodologies
proposed in the literature for addressing the EVRP and its variants can be categorized into
exact solution methods, heuristic methods, metaheuristic methods, and learning-based
methods [2–7]. Due to the problem’s complexity, exact methods either fail to provide
solutions for large-scale instances or require excessive computational time. Consequently,
researchers have proposed heuristic and metaheuristic methods to address these chal-
lenges. While these methods do not guarantee optimal solutions, they produce high-quality
solutions within a reasonable time frame [8–10]. In recent years, studies incorporating
self-learning methods, a sub-branch of machine learning, have gained prominence. The
models and solutions developed for classical vehicle routing cannot be directly applied to
electric vehicles. Additionally, the need to study learning-based Vehicle Routing Problems
specifically for electric vehicles and propose effective solutions has become increasingly
important. In the last few years, research integrating self-learning methodologies has
gained considerable prominence, with deep reinforcement learning (DRL) emerging as a
key focus in the study of Vehicle Routing Problems [4–7]. Reinforcement learning methods
involve strategies whereby agents determine the optimal course of action based on the state
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or observation of the environment. The agent selects actions from a set of available options
and receives rewards based on the utility of the actions taken within a given time step. The
actions chosen by the agent can alter the state of the environment in which it operates.

EVRP softwares are crucial in supporting daily operational decisions within the
logistics and distribution sectors. These decisions encompass route planning, vehicle
assignment, charging station selection, and real-time updates. Typically, these processes
are initiated at various times of day and should be completed quickly and efficiently.
As a realistic decision-making time, algorithms should produce results approximately
within 2 min for a medium-size last-mile delivery problem [11]. Reinforcement learning
(RL) methods enhance the effectiveness of EVRP softwares by enabling the generation of
solutions more rapidly compared to traditional optimization methods. This capability for
rapid solution production significantly increases the practical applicability of RL algorithms,
particularly given the dynamic nature of logistics operations. The ability of RL approaches
to produce fast and adaptive solutions aligns well with the operational requirements of
logistics, where timely and flexible decision making is essential for maintaining efficiency
and meeting service standards.

Upon reviewing the EVRP literature on the application of Q-learning, two notable
studies emerge. The study of Ottoni et al. [12] employs reinforcement learning to address
the Electric Vehicle Traveling Salesman Problem (EVTSP), comparing the performance
of two reinforcement learning algorithms, Q-learning and SARSA. The study provides
route optimization for a single electric vehicle. This approach does not incorporate the
management of multiple electric vehicles, which is essential for addressing fleet-based
scenarios such as the CEVRP. Consequently, the methodology is not directly transferable
to multi-vehicle contexts. The second study [13] is focused on generating energy-efficient
routes for electric vehicles from a source to a destination while considering the possibility of
recharging at intermediate charging stations. The studies of the path planning include tasks
from a point (source) to another point (destination). In these studies, the most suitable route
between two points is obtained and there is no obligation to go to any point other than the
start–end points. However, in the last-mile delivery, there is a need for multi-delivery tasks
for transportation. This approach overlooks critical constraints, such as the load capacity
of the vehicles [14]. As a result, the method is not directly applicable to CEVRP, which
necessitates the consideration of multi-task constraints.

In this study we propose a Q-learning method specifically designed to solve the CEVRP,
incorporating well-defined reward structures and fine-tuned hyperparameters for enhanced
performance. In this study, route planning is conducted for multiple EVs. However, the
number of vehicles is not predetermined at the outset; instead, it is dynamically determined
based on customer demand and route optimization. Routes are found where all customer
demands are met and the total distance traveled by the fleet is minimized. The number
of EVs in the solution is suggested and optimized by the model as in the study [2,4].
This means that a smaller number of EVs will not be enough for customers’ demands
and a higher number will be excessive and lead to unnecessary energy consumption. In
the proposed method, a single-agent approach is adopted to jointly determine both the
routes and the number of EVs within an integrated framework, rather than conducting
independent planning processes for each EV.

To the best of our knowledge, this study is pioneering work using a Q-learning
algorithm to solve the CEVRP. The proposed algorithm is tested using a newly presented
dataset. The dataset is based on real-world data, thereby addressing a notable gap in
the literature, where datasets for the EVRP and its variants are predominantly derived
from synthetic data. Synthetic datasets frequently fail to capture the full complexity
and intricacies of real-world logistics problems. The existing datasets for the EVRP in
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the literature typically consist of customer coordinates (x, y), with distances between
nodes calculated using the Euclidean distance metric. However, methods that utilize
environmental data, such as reinforcement learning, require additional information related
to the environment, including streets, intersections, and traffic density. RL is a general
method and can work with any data; however, to correctly model the state transitions in the
environment, access to environmental data such as street structure, intersection information,
and traffic status often plays a more critical role in these approaches. Therefore, the “need to
use environmental data” is not a requirement specific to RL; however, since the definitions
of “state” and “reward” in RL are directly shaped by environmental factors, the richer these
data are, the higher the learning process and decision quality tend to be. Consequently, the
richness and quality of the environmental data directly enhance the learning process and
the resulting decision-making quality.

Optimal solutions for this dataset are obtained through a mathematical model that
addresses the CEVRP, where each EV has a limited cargo load and battery capacity to
satisfy customers’ delivery demands within specified time windows. Experimental results
demonstrate that the proposed algorithm achieves near-optimal solutions in a short time
for large-scale test problems.

The contributions of this study to the literature can be summarized as follows:

• A dataset fulfilling the ’environment’ requirement for researchers working on the
EVRP using reinforcement learning is provided.

• Optimal solutions are presented for scenarios with and without time windows (TW)
in the dataset generated from a last-mile delivery perspective.

• A solution to the CEVRP problem using Q-learning is proposed, and comparisons are
made with the mathematical model.

The remainder of the paper is organized as follows: Section 2 reviews the literature
on related problems and presents the place of the subject in the literature. Section 3
outlines the definitions and steps involved in generating the dataset. In Section 4, the
CEVRPTW problem is defined, and the corresponding mathematical model is introduced.
Section 5 provides a detailed explanation of the Q-learning method developed to address
this problem. Section 6 presents computational experiments and analysis. Finally, Section 7
concludes the paper and discusses future research directions.

2. Literature Review
The EVRP is in the NP-hard problem class. Various approaches have been employed by

researchers to address this problem, including exact solution methods, heuristic methods,
metaheuristic methods, and learning-based techniques. A summary of the advantages and
disadvantages associated with each of these methodologies is provided in Table 1.

The number of publications regarding the EVRP on the Web of Science (WOS) between
2014 and 2024 is shown in Figure 1. To obtain Figure 1, the WOS database was searched
with the query “ALL = “electric vehicle” AND (ALL = route planning OR ALL = path
planning OR ALL = task scheduling OR ALL = routing)”. This query included all papers
that contained the phrase “electric vehicle” and also contained at least one of the phrases
“route planning”, “path planning”, “task scheduling”, or “routing”. It seems that interest
in the subject has increased in recent years.
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Table 1. Comparison of different solution approaches for the VRP.

Approach Advantage Disadvantage

Exact methods [15–18]
- Gives exact solutions
- Suitable for small and

medium-sized problems.

- Long solution times for
large-sized problems

Heuristics, metaheuristics
[8–10,19–23]

- Shorter solution time - These methods do not
guarantee an optimal solution

Learning-based methods
[2–7,24–29]

- Adapting to changing conditions and
dynamic environments

- Easily adaptable to different problem
types and constraints

- Ability to make decisions in environments
containing uncertainty and randomness

- These methods do not
guarantee an optimal solution

- The training process can be long
and require high
computational power
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Figure 1. EVRP studies based on year.

There are review and survey studies on the EVRP and its variants in the literature [1,30–33].
Erdelic and Caric [30] present a literature review on the latest developments regarding the
EVRP. This study provides an overview of state-of-the-art procedures for solving the EVRP
and related problems. The study of Qin et al. [31] presents comprehensive research on EV
routing problems and their many types. In the study, EV routing problems are divided into
nine classes. For each of these nine classes, the settings of the problem variables and the
algorithms used to obtain their solutions are examined.

Many researchers have used algorithms that give exact solutions (branch-and-cut
algorithms, branch-and-price algorithms, branch-and-price-and-cut algorithms) for the
solution of the EVRP and its variants in the literature [15–18]. The study of Desaulniers
et al. [15] considers four variants of the problem: (i) at most, a single charge is allowed per
route, and the batteries are fully charged during the visit to a charging station; (ii) more
than one charge per route (full charging only); (iii) a maximum of one single charge (partial
charging). Exact branch-price-and-cut algorithms are presented to generate suitable vehicle
routes. Computational results show all four variants are solvable—for instance, with up to
100 customers and 21 charging stations. Keskin and Catay [16] discuss the EVRPTW and
model this problem by allowing partial charges with three charging configurations: normal,
fast, and super-fast. The study aims to minimize the total charging cost while operating
a minimum number of vehicles. The problem is formulated as a Mixed Integer Linear
Program (MILP), and small instances are solved using the CPLEX solver. The Adaptive
Large Neighborhood Search (ALNS) is combined with an exact method to solve large
instances. In the Lam et al. [17] study, a branch-and-cut-and-price algorithm is proposed
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for the Electric Vehicle Routing Problem, with time windows, piecewise-linear recharging,
and capacitated recharging stations. The proposed algorithm decomposes the routing to
integer programming and the scheduling to constraint programming. Results show that
this hybrid algorithm solves instances with up to 100 customers.

Some studies in the literature aim to solve problems with heuristic or metaheuristic
methods [8–10,19–23]. Jia et al. [8] propose a novel bi-level Ant Colony Optimization
algorithm to solve the CEVRP. The study involves finding optimal routes for a fleet of
electric vehicles to serve customers while satisfying capacity and electricity constraints.
The algorithm treats the CEVRP as a bi-level optimization problem by dividing it into two
sub-problems: the upper-level Capacitated Vehicle Routing Problem (CVRP) and the lower-
level Fixed Route Vehicle Charging Problem (FRVCP). Akbay et al. [9] propose a modified
Clarke and Wright Savings Heuristic for the EVRPTW. The solutions of the heuristic serve
as initial solutions for the Variable Neighborhood Search metaheuristic. Numerical results
show that the Variable Neighborhood Search matches the CPLEX in the small problems.
The study of Rastani and Catay [10] mentions that cargo weight plays an important role
in routing electric vehicles as it can significantly affect energy consumption. The Large
Neighborhood Search method, a metaheuristic algorithm, has been proposed to solve the
problem. The study shows that cargo weight can create significant changes in route plans
and fleet size and neglecting it can cause severe disruptions in service and increase costs.
Deng et al. [21] introduce an Improved Differential Evolution (IDE) algorithm to address a
variant of the EVRP that includes time windows and a partial charge policy with nonlinear
charging. The proposed algorithm is compared with the genetic algorithm, artificial bee
colony algorithm, and Adaptive Large Neighborhood Search for comparison. Experimental
comparisons reveal that the IDE is superior to others.

To solve the EVRP, the reinforcement learning method, one of the learning-based
methods, stands out. EVRP studies that use reinforcement learning as a solution method
are given in Figure 2. To obtain Figure 2, the WOS database was searched with the
query “ALL = “electric vehicle” AND ALL = “reinforcement learning” AND (ALL = route
planning OR ALL = path planning OR ALL = task scheduling OR ALL = routing)”. This
query targeted papers that contained both the phrases “electric vehicle” and “reinforcement
learning” and contained at least one of the phrases “route planning”, “path planning”,
“task scheduling”, or “routing”.
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Among these studies, Nazari et al. [24] improve the pointer network by simplifying the
recurrent neural network (RNN)-based encoder, which provides more efficient solutions
to the VRP. Kool [25] introduces a transformer-based architecture for the VRP, where both
the encoder and the decoder part of the neural network use the attention mechanism. In
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this way, calculation speed and solution quality have increased significantly. In Soni et al.’s
work [26], the application of reinforcement learning techniques in electric vehicle (EV)
movement planning is explored. The study focuses on optimizing battery consumption
and evaluating EV travel time under various reinforcement learning schemes. A traffic
simulation network is constructed using Simulation for Urban Mobility (SUMO) software,
and both model-based and model-independent methods are applied. The findings reveal
that Value Iteration proves to be an efficient algorithm in terms of battery consumption,
average travel speed, vehicle travel time, and computational complexity. Q-learning is less
successful in terms of travel time, despite demonstrating optimized battery consumption.
Li et al. [27] in their study use a new neural network integrated with a heterogeneous
attention mechanism to strengthen the deep reinforcement learning policy to select nodes
automatically. This way, solutions are produced by considering the priority relationships
between nodes. Nolte et al. [28] introduce Appointment Delivery, which aims to increase
the efficiency of last-mile package delivery by taking advantage of the potential of Electric
Autonomous Vehicles, especially in regions with high urbanization, such as Smart Cities.
Additionally, for the optimization problem of finding the optimal delivery route for a partic-
ular delivery round, they propose two heuristic solutions based on state-of-the-art machine
learning methods (attention mechanism, RNN) and reinforcement learning (actor–critic
training). RL is a great advantage, especially for the problem under consideration, since
optimal computational solutions for TSPs are computationally expensive or even infeasible.
Lin et al. [2] propose a novel method that employs deep reinforcement learning to address
the EVRPTW. This advanced framework seeks to enhance routing decisions for electric
vehicles (EVs) by incorporating considerations such as depot locations, battery levels, and
visits to charging stations. Qi et al. [3] propose a new RL-based algorithm for the energy
management strategy of hybrid electric vehicles. A hierarchical structure is used in deep
Q-learning algorithms (DQL-H) to obtain the optimal solution for energy management.
This new RL method solves the sparse reward problem in the training process and provides
optimal power distribution. DQL-H trains each level independently. Additionally, as a
hierarchical algorithm, DQL-H can change how the vehicle environment is explored and
make it more effective. Experimental results show that the proposed DQL-H method
provides better training efficiency and lower fuel consumption than RL-based methods.
Nouicer et al. [4] propose a reinforcement learning approach with graph-based modeling
to solve the Electric Vehicle Routing Problem with Time Windows. The aim of the article
is to minimize the distance traveled while serving customers at certain time intervals by
using the combination of Structure2vect and the Double Deep Q-Network. The proposed
method is tested on real-world data from a public utility fleet company in Tunisia. The
results reveal that the proposed model reduces the distance traveled by up to 50% and
also optimizes the running time. Tang et al. [5] extend the A2C approach by integrating a
Graph Attention Mechanism (GAT) to address the EVRPTW. Their work also introduces an
energy consumption model that accounts for factors such as electric vehicle mass, speed,
acceleration, and road gradient. Wang et al. [6] introduce a novel approach to the CEVRP
by integrating deep reinforcement learning (DRL) with the Adaptive Large Neighborhood
Search (ALNS). In this approach, operator selection is modeled as a Markov Decision Pro-
cess (MDP), with DRL used for adaptive selection of destroy, repair, and charge operators.
Rodríguez-Esparza et al. [7] introduce the Hyper-heuristic Adaptive Simulated Annealing
with Reinforcement Learning (HHASARL) algorithm to address the Capacitated Electric
Vehicle Routing Problem (CEVRP). The algorithm integrates a reinforcement learning (RL)
module as the selection mechanism and employs the Metropolis criterion from the well-
established Simulated Annealing (SA) metaheuristic as its move acceptance component.
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Empirical results indicate that HHASARL demonstrates superior performance on the IEEE
WCCI2020 competition benchmark.

3. Description of the ESOGU-CEVRPTW Dataset
A new dataset named ESOGU-CEVRPTW is generated for the Eskisehir Osmangazi

University (ESOGU) Meselik Campus. The dataset has been uploaded to Mendeley
Data [34]. The ESOGU-CEVRPTW comprises 118 customers, ten charging stations, and a
single depot. The dataset contains 45 different instances for the Capacitated Electric Vehicle
Routing Problem with Time Windows. The CEVRPTW is a version of the CVRPTW, one of
the VRP variants. The proposed dataset also includes information about EVs and charging
stations. The dataset consists of test problem groups of five different sizes, with 5, 10, 20, 40,
or 60 customers. Each test problem group contains instances from the random (R), clustered
(C), and random–clustered (RC) customer distribution. Each group includes three different
types of time windows: wide, medium, and narrow. All instances in the dataset are txt files.
The dataset contains large-sized instances to test learning-based methods but also includes
small-sized instances so that the problem can be solved by exact methods.

Dataset Generation

This section provides a detailed explanation of the dataset generation process. The
generated dataset comprises real-world data, in contrast to those commonly found in the
literature. The locations of the depot, customers, and charging stations within the dataset
are based on geographical locations at the Eskisehir Osmangazi University Meselik Campus
(Figure 3). The map in Figure 3 is generated using Google Maps, with geographical markers
in different colors added to the specified points. In Figure 3, the blue markers represent the
delivery customers, and the green markers represent the charging stations.
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Figure 3. Geographical locations of the depot, customers, and charging stations on the ESOGU
campus in Eskisehir.

When generating the dataset, the road network of the ESOGU campus is transferred
to the SUMO simulation environment. Information about all the buildings on the ESOGU
campus is added to the SUMO. To display the buildings on the campus on the map, a
container stop is added to the entry point of all buildings. The representation of the ESOGU
campus in the SUMO Netedit environment is shown in Figure 4. In Figure 4, the blue
container stop shows the pickup or delivery customers, and the green rectangles show the
charging stations.
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The dataset contains instances of different sizes, including 5, 10, 20, 40, and 60 cus-
tomers. The customers have been selected in three different distributions, depending on
the geographical distribution of the customer locations. These distributions are the ran-
dom customer distribution (R), the clustered customer distribution (C), and the customer
distribution (RC) which is a mixture of both.

Figure 5a illustrates the scenario where 20 customers are randomly selected from the
118 customers on campus for random customer distribution. Subsequently, 20 customers
are selected from the customer clusters. Figure 5b depicts the clustered distribution of
these 20 customers. By merging both types of customer distributions, a random–clustered
customer distribution is created, as shown in Figure 5c.
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For the clustered customer distribution, the customers within the ESOGU campus
have been divided into clusters using the K-Means algorithm. Figure 6 illustrates the
customers segmented into these clusters.
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Following the identification of customers in the dataset, 10 parking spaces on the
campus are designated as charging stations. The parameters in this dataset are generated
to reflect real-world problems. To generate the time window constraint in the dataset, “the
earliest start time to service” and “the latest start time to service” times for each customer
are generated. The time window to start to service is generated by adapting the time
window derivation mechanism from study [35], originally used for the machine scheduling
problem, to the Vehicle Routing Problem. The dataset includes three different time window
horizons: narrow, medium, and wide. A narrow time window requires more vehicles to
serve all customers compared to a wide time window.

Time windows, “the earliest start time to service” and “the latest start time to service”,
are derived from a discrete uniform distribution using the formula presented in Equation (1).
ti refers to the travel time from the depot to the customer at normal speed, si denotes the
duration of the pickup/delivery task for the customer (including walking times to and
from the vehicle as well as pickup/delivery times), and k represents the number of vehicles.
A wide time window, a medium time window, and a narrow time window are determined
using the (α, β) values used in the study by [35]. For example, a narrow time window is
obtained by choosing (α, β) = (0, 1.2).[

α× ∑(ti + si)

k
, β× ∑(ti + si)

k

]
(1)

When the formula is applied for 118 customers and (α, β) = (0, 1.2), the time window
is determined as [0, 1789]. This value [0, 1789] represents a narrow time window.

“Travel time” refers to the time it takes for the vehicle to traverse the distance between
the depot and the customer. The Google Distance Matrix API is utilized to calculate this
time. The Distance Matrix API can compute travel distance and duration for specific start
and end points. Actual distance is used in these calculations instead of Euclidean distance.

“Service time” corresponds to the total time required for a person to deliver the goods
to the customer via a pedestrian route after the vehicle reaches the nearest point to the
customer, and for the person to return to the vehicle.
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“Demand” for each customer in the problem is generated from a discrete uniform
distribution between [19, 95].

The dataset includes a distance matrix that contains the shortest distances between all
customers and charging stations on the ESOGU campus. The distance matrix is generated
using SUMO. By utilizing these networks, the shortest path from one node (depot, customer,
or charging station) to another node is calculated.

Figure 7 presents a comparison between the shortest paths computed using actual
distances and Euclidean distances. As Euclidean distance does not accurately represent
true travel distances, it fails to capture the complexities of real-world scenarios. The
proposed dataset addresses this need by incorporating features such as buildings, streets,
and other relevant infrastructure, thereby enabling route planning in a realistic environment
with multiple attributes. This dataset, designed for real-world conditions, facilitates the
application of advanced logistics methods. It provides a valuable resource for researchers,
particularly those employing approaches that rely on environmental information, such
as road characteristics (e.g., one-way, two-way, inclined, narrow), traffic regulations, and
other factors. Moreover, the dataset offers the capability to simulate scenarios, such as
road closures due to traffic accidents, allowing for the modeling of such situations in deep
learning models.
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Figure 7. Comparison of Euclidean distance and actual distance.

Figure 8 provides a description of the instances in the ESOGU-CEVRPTW dataset. It
includes information on the number of customers in each instance, the distribution of the
customers, and the time window applied. The generated dataset consists of real data from
the ESOGU campus, with the campus map modeled in the SUMO simulation environment.
An example problem from the dataset is presented in Table 2.

Table 2. An instance of the ESOGU-CEVRPTW dataset.

Point ID Location Earliest Start Time
to Service

Latest Start Time
to Service Service Time Demand

32 39.752487–30.488123 1322 1378 180 76
19 39.748319–30.489034 296 350 120 57
31 39.752941–30.483072 1372 1448 120 57

60A/2 39.749343–30.474854 764 840 240 38
75 39.746589–30.474760 424 487 120 38
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Each location in the instance has an identifier (id), latitude and longitude, earliest start
time to service, latest start time to service, demand and service time.

In the dataset presented within the paper, both the time window (TW) and without
time window versions of the CEVRP are solved using a mathematical model to obtain
optimal solutions. One of the objectives of developing a dataset based on real-world
data is to fulfill the need for an ’environment’ for researchers working on EVRP using
reinforcement learning. In line with this, the paper introduces the novel Q-learning method
as a reinforcement learning approach to explore how the proposed dataset performs within
the context of reinforcement learning.

4. Mathematical Model for the CEVRPTW
In this paper, the Capacitated Electric Vehicle Routing Problem with Time Windows is

considered. The CEVRPTW is a combinatorial optimization problem. In the problem, EVs
with a given payload and battery capacity leave from the depot fully charged. They leave
from the depot to serve customers and visit stations to recharge their batteries throughout
their routes. When an EV visits a charging station, it will be fully charged to complete its
task. At the end of route, they must return to the depot. For EVs, the aim is to find routes
where all customer demands will be met, and the fleet’s total distance or time traveled will
be minimized. The CEVRPTW is initially defined as a complete directed graph G = (V,E),
as illustrated in Figure 9. V = {0 ∪ C ∪ F} represents the set of nodes in the graph. The
depot is denoted by 0, C represents the customers, and F represents the charging stations.
E = {(i,j)| i,j ∈ V, i ̸= j} is the set of edges. Each edge between nodes i and j has a distance
value, denoted as dij. [ei,,li] represents the time window of customer i. When an electric
vehicle travels on an edge, it consumes an amount of energy ei,j = h(r)·dij. h denotes the
energy consumption rate.
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This problem aims to minimize the total travel distance of all electric vehicles while
serving customers within their time windows. There is a constraint that each customer
can only be served one vehicle. EVs must return to the depot after fulfilling all customers’
demands. It assumes that electric vehicles are always fully charged at charging stations.

In the literature, Schneider et al. [36] propose a mathematical model for the Capacitated
Electric Vehicle Routing Problem with Time Windows. The model uses the following notation.

1. Sets

0, N + 1 Depot instances

F′
Set of visits to recharging stations, dummy vertices of set of recharging
stations F

F0
′ Set of recharging visits including depot instance 0

V Set of customers V = {1, . . ., N}
V0 Set of customers including depot instance 0
V′ Set of customer vertices including visits to recharging stations V′ = V ∪ F′

V0
′ Set of customers and recharging visits including depot instance 0:

V0
′ = V′ ∪ {0}

V′N+1
Set of customers and recharging visits including depot instance N + 1:
VN+1

′ = V′ ∪ {N + 1}

V’0,N+1
Set of customers and recharging visits including 0 and N + 1:
V’0,N+1 = V′ ∪ {0} ∪ {N + 1}

2. Parameters

qi Demand of vertex i, 0 if i /∈ V
dij Distance between vertices i and j
tij Travel time between vertices i and j
ei Earliest start of service at vertex i
li Latest start of service at vertex i
si Service time at vertex i (s0, sN+1 = 0)
C Vehicle capacity
g Recharging rate
h Charge consumption rate
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3. Decision Variables

Pi Decision variable specifying the time of arrival at vertex i

ui
Decision variable specifying the remaining battery capacity on arrival at
vertex i

yi
Decision variable specifying the remaining battery capacity on arrival at
vertex i

xij Binary decision variable indicating if arc (i,j) is traveled

4. Mathematical Model

The mathematical model of the CEVRPTW is formulated as Mixed-Integer Linear
Programming as follows [36]:

minimize ∑
iϵV’

0,jϵV’
N+1,i ̸=j

dijxij (2)

∑
jϵV′N+1, i ̸=j

xij = 1 ∀i ϵ V (3)

∑
jϵV′N+1, i ̸=j

xij ≤ 1 ∀i ϵ F′ (4)

∑
iϵV′N+1, i ̸=j

xji − ∑
iϵV′0, i ̸=j

xij = 0 ∀j ϵ V′ (5)

Pi +
(
tij + si

)
xij − l0

(
1− xij

)
≤ Pj ∀i ϵ V0, ∀j ϵ V′N+1, i ̸= j (6)

Pi + tijxij + g((Qc)− yi)− (l0 + M ∗ g(Qc))
(
1− xij

)
≤ Pj ∀i ϵ F′, ∀j ϵ V′N+1, i ̸= j (7)

ej ≤ Pj ≤ lj ∀j ϵ V′0,N+1 (8)

0 ≤ uj ≤ ui − qixij + C
(
1− xij

)
∀i ϵ V′0, ∀j ϵ V′N+1, i ̸= j (9)

0 ≤ u0 ≤ C (10)

0 ≤ yj ≤ yi − (d ijh)xij + Qc
(
1− xij

)
∀i ϵ V, ∀j ϵ V′N+1, i ̸= j (11)

0 ≤ yj ≤ Qc− (d ijh)xij ∀i ϵ F′0, ∀j ϵ V′N+1, i ̸= j (12)

xijϵ [0, 1] ∀i ϵ V′0, j ϵ V′N+1, i ̸= j (13)

The objective function (2) is to minimize the total travel distance. Constraint (3) ensures
that service is provided to every customer node, constraint (4) ensures that the charging
station can be visited, and constraint (5) prevents the formation of sub-tours. Constraints (6)
and (7) guarantee time feasibility. Constraint (8) refers to the time window conditions. (9)
and (10) are the constraints that control the vehicle’s load. Here, the vehicle will leave the
depot with the load as much as its capacity. Constraints (11) and (12) control the vehicle’s
charging status. Constraint (13) determines the number of routes. It gives the number of
routes that will leave the initial warehouse and go to the nodes.

5. Reinforcement Learning for the CEVRP
Reinforcement learning (RL) involves an agent interacting with its environment to

learn an optimal policy through trial and error for sequential decision-making problems
across various fields. An RL agent engages with an environment over a period. At each
time step t, the agent receives a state st from a state space S and chooses an action at from
an action space A. The agent receives a reward rt and transitions to the next st+1. The
environment provides a reward to the agent based on the effectiveness of its actions. The
agent experiments with various actions by assessing the total rewards received. Through
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numerous trials, the algorithm learns which actions yield higher rewards and develop a
behavioral pattern. Over time, the agent aims to maximize the cumulative reward [37].

RL algorithms are based on the Markov Decision Process (MDP). In this study, the
route generation process to solve the CEVRP is considered a sequential decision-making
problem. This problem is formulated using reinforcement learning (RL) and addressed
accordingly. The route generation process is modeled as a Markov Decision Process (MDP).
The elements of MDP are defined as state, action, transition rule, and reward function. In the
study, states are nodes (depot, customers, charging stations), and actions are moving from
one node to another node. RL aims to capture essential features of the environment with
which an agent interacts to achieve its goal. The agent should be able to perceive the state of
the environment and take actions that affect the state. RL aims to capture complex structures
and go further than traditional machine learning by using more adaptable algorithms. RL
algorithms have more dynamic behavior than conventional machine learning algorithms.

RL algorithms can be divided into two groups: model-based and model-independent.
Model-based algorithms enhance learning by using precise knowledge of the environment.
On the other hand, model-free algorithms can be applied without knowledge of the envi-
ronment and can theoretically be adapted to any problem. These algorithms model the
environment with MDP and learn strategies through interaction. Model-free algorithms
can be divided into value-based, policy-based, and actor–critic. In this study, the Q-learning
algorithm, one of the value-based algorithms, was used.

Proposed Q-Learning Algorithm

The Q-learning algorithm is a method of learning by interacting with the environment.
It aims to learn strategies that tell agents what actions to take under what conditions. It
does not need an environment model and can handle random transformation and reward
problems. Q-learning finds the optimal strategy for any finite Markov Decision Process
(FMDP). In this sense, it maximizes the total return expectation in all successive steps,
starting from the current situation. Given the infinite search time and partially random
strategy, Q-learning can determine the optimal action selection strategy for any FMDP.

This algorithm is an algorithm that uses a temporal difference algorithm and action-
value-based off-policy. The action with the highest value among the possible actions is
selected at each step. In other words, a greedy approach is applied. In this algorithm, a table
called Q-table is created using situation–action pairs. The table size is the “number_of_states
× number_of_actions”. To decide which action to choose from the current situation, the
Q values in the table are looked at and the maximum Q value is selected. This algorithm
works in discrete action sets and deterministic environments. The update rule that forms
the basis of Q-learning is given in Equation (14).

Q(st, at) = α[rt+1 + γmaxQ(st+1, at)−Q(st, at)] (14)

Q(st, at) (state, action) in Equation (14) is the current state, α is the learning coefficient,
rt+1 is the reward value in the reward table, γ is the discount factor, and maxQ(st+1, at)

represents the highest Q value of the places that can be visited.
In Q-learning algorithm, a RL agent engages with an environment over a period. At

each time step t, the agent receives a state st from a state space S and chooses an action at

from an action space A. In our approach, the state representation consists of current node
id, current battery capacity, and current cargo capacity information. Action at determines
the node that the EV goes to at step t. The sequence of actions is generated from the initial
step 0 to the final step T. Here, a0 is the action of departing from the depot, a1 is the action
selected at the first step, and aT is the action of returning to the depot. The action space
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A represents a set of discrete actions. The agent decides to go to a customer, a charging
station, or a depot.

An essential aspect of the Q-learning algorithm is the balance between exploration
and exploitation. Initially, the agent lacks knowledge about the environment and is more
inclined to explore rather than utilize existing knowledge. Over time, as the agent interacts
with the environment, it gains understanding and increasingly relies on this acquired
knowledge. It is crucial to strike a balance between leveraging this knowledge and continu-
ing to explore new possibilities. Without this balance, the Q-value function may converge
to a local minimum rather than the optimal solution. To address this, the exponential decay
formula is employed.

In the study, several enhancements have been implemented to the state-of-the-art
version of Q-learning, as outlined in studies in the literature [12], to better address the
CEVRP problem. One of the key modifications is the use of a masking technique, which
generates possible actions by masking the nodes that the electric vehicle (EV) cannot reach.
This ensures that the EV selects from only the feasible actions at each step. By filtering out
infeasible options, the masking mechanism enhances the agent’s focus on valid actions,
thereby aiding in the construction of feasible solutions. The masking function generates
a list of feasible actions based on the current state, considering factors like battery level,
vehicle capacity, time windows, and visited customers. Invalid actions, such as moving to
a node that cannot be reached due to insufficient battery or capacity, are masked out.

• If customer node i has already been visited, it is masked.
• If node i represents a customer, its unsatisfied demand exceeds the remaining cargo

capacity of the EV, and node i is masked.
• If the EV is currently at customer i and its battery level is insufficient to visit the next

customer j and return to the depot or any charging stations, customer j is masked.
• If the EV is currently at any node i and its battery level is insufficient to visit the next

charging station j and return to the depot or any charging stations, charging station j
is masked.

• If a self-loop is detected, where the agent would revisit charging stations or depots
unnecessarily before completing new deliveries, the corresponding action is masked
to encourage more efficient routing.

Additionally, in contrast to the classical Q-learning approach, where the epsilon-
greedy strategy relies on a fixed epsilon value to balance exploration and exploitation, we
have adopted an Epsilon Decay Strategy. This dynamic adjustment of epsilon ensures a
more adaptive exploration–exploitation trade-off, which can be more effective than a static
epsilon throughout the learning process. These updates aim to improve the performance
and applicability of Q-learning in solving the CEVRP. The step-by-step representation
of the proposed Q-learning algorithm is shown in Figure 10. In the initial step of the
algorithm, the depot is designated as (s 0) and added to the route list. Accessible actions
from this initial state are determined through masking and included in the feasible_actions
list. Specifically, customer 5 is masked in this step, as it is unreachable from (s 0) with a
battery capacity of 3000.

The pseudo-code of the proposed Q-learning algorithm to solve the CEVRP is pre-
sented in Algorithm 1 and Algorithm 2. First, the algorithm creates a Q table with the
“states_size × action_size”. The created Q table is initially filled with zeros because the
agent has no experience. The training process begins with the initialization of the neural
network weights. Subsequently, entire iteration is executed until the agent reaches a ter-
minal state, which is determined by the completion of the tour with all customers served.
At each new state st, the agent selects an action using an epsilon-greedy policy balancing
exploration and exploitation. Early in training, it is more likely to choose actions randomly
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(exploration). Over time, as it becomes smarter, the epsilon value decreases, meaning the
agent increasingly exploits the knowledge it has gained so far by picking the best action
based on the Q-values predicted by the model. When the agent wants to explore (i.e., the
random number is below epsilon), it selects a random action from the set of feasible actions
determined by the masking scheme. Otherwise, it computes the Q values for the current
state and feasible actions, then selects the action that achieves the highest Q value. The
chosen action updates the EV’s route, battery level, and capacity based on the selected
node (e.g., moving to a customer, charging station, or depot). The reward for the action is
calculated using the reward function in Equations (15) and (16), which penalizes the agent
for longer distances while incentivizing efficient route planning. After the agent executes
an action, the environment transitions to a new state, reflecting the updated EV’s status
(battery, capacity), location, and current node information.

R = ∑ rt (15)

rt = −
(
dij

)
if i = Vt−1 and j = Vt (16)

Algorithm 1: Proposed Q-learning algorithm

1: Initialize Q table with zeros and large negative number for self-loops.
2: Set maximum number of iterations max_iterations.
3: Set γ and α.
4: Set initial epsilon ϵ, minimum epsilon min_epsilon, epsilon_decay
5: Initialize i = 0.
6: while i ≤ max_iterations
7: Initialize visited customers list.
8: Initialize route_list to empty list.
9: Initialize total_distance = 0.
10: Initialize state (s t)

11: Initialize C and Qc .
12: while True do
13: if all customers visited and current state is the depot then
14: complete_route = True.
15: end if
16: Generate a list of feasible_actions according to the masking scheme
17: if feasible_actions is empty then
18: complete_route = False
19: end if
20: Select action from feasible_actions using epsilon-greedy policy
21: Execute step function with selected action and get reward rt and next state
st+1

22: Update Q value using Bellman’s equation.
23: TD = reward + γ× max

action
Q[next_state, action]−Q[state, action]

24: Q[state, action] = Q[state, action] + α× TD
25: st = st+1

26: Update epsilon ϵ = max(min_epsilon, ϵ× epsilon_decay)
27: end while
28: if complete_route = True then
29: add route and its total distance route_list.
30: end if
31: Increment i.
32: end while
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Algorithm 2: Step Function

input: state, action, current_load_capacity, current_battery_capacity)
output: reward, state, current_load_capacity, current_battery_capacity
1: Initialize charge_consumption rate h=1.
2: charge_consumption← dij × h
3: if can go to this action based on the charge consumption and customer demand then
4: state=customer
5: reward(r t)← −(d ij

)
6: update current_load_capacity, current_battery_capacity.
7: end if
8: else if cannot go to this action based on the charge consumption
9: choose the random charging station
10: state =charging station
11: rt ← −(d ij

)
12: update current_battery_capacity.
13: end if
14: else if cannot go to this action based on the customer demand
15: state =depot
16: rt ← −(d ij

)
17: update current_load_capacity, current_battery_capacity.
18: end if
19: Return reward, state, current_load_capacity, current_battery_capacity

The episode terminates when the agent successfully visits all customers and returns to
a depot. If the agent runs out of battery or fails to complete the route, the episode ends, and
the agent learns from the failure. Successfully completed routes are recorded, and the agent
strives to minimize the total distance traveled while satisfying customer demand. The
algorithm starts with a predefined maximum number of iterations. At every 100th iteration,
the route with the lowest cost is identified from the list of completed routes. Subsequently,
the algorithm evaluates whether the most recently identified lowest cost route is identical to
the previously determined lowest cost route. If the lowest cost route remains unchanged for
a consecutive series of iterations (specifically, 2000 iterations), the algorithm is considered
to have achieved convergence, thereby terminating the iterative process.



Appl. Sci. 2025, 15, 1068 19 of 27

6. Experimental Results
In this section, experiments are conducted on the ESOGU-CEVRPTW dataset to

evaluate the performance of the proposed mathematical model in solving the CEVRPTW.
Additionally, the proposed Q-learning algorithm for solving the CEVRP is tested on the
ESOGU-CEVRPTW dataset and compared with the optimal results.

6.1. Results of the Mathematical Model

The proposed mathematical model is used to obtain optimal routes on the presented
dataset. Optimal results are obtained with the CPLEX solver for the generated ESOGU
dataset. Table 3 shows the mathematical model results for CEVRP without including the
time window constraint for some instances in the dataset. The execution time, the minimum
distance, the number of routes, and the optimal route for solved instances are shown in
Table 3. The mathematical model can produce results in a reasonable time for small-sized
problems involving 5, 10 customers. For the solution of large-sized problems involving 20,
40, and 60 customers, the model is run for approximately 3 h and results are given in Table 3.
Optimal results could not be obtained in a reasonable time for large-sized problems.

Table 3. Optimal solutions of test problems without time windows for full-charging strategy using
CPLEX solver.

Instance Name Distance (m) CPLEX Time (s) Routes

ESOGU_C5 3956.00 0.50 R1: Depot-35-cs7-115-2-32-Depot
R2: Depot-42B-Depot

ESOGU_R5 4977.00 0.53 R1: Depot-31-32-19-cs10-75-60A/2-Depot

ESOGU_RC5 4944.00 0.41 R1: Depot-31-42B-115-32-Depot
R2: Depot-75-Depot

ESOGU_C10 5646.00 124.33 R1: Depot-31-119-34-24-22A-Depot
R2: Depot-45-13-14-cs8-113-26-Depot

ESOGU_R10 4889.00 389.74 R1: Depot-56-122-70-74-77-78-60A/2-Depot
R2: Depot-22E-21-22A-Depot

ESOGU_RC10 5843.00 345.63 R1: Depot-13-14-22E-21-24-22A-Depot
R2: Depot-56-122-74-45-Depot

ESOGU_C20 * 9125.00 11,160.69

R1: Depot-30-115-26-116-27-37B-Depot
R2: Depot-44-58/1-58/1-43C-42B-31-39-Depot
R3: Depot-49-2-8-cs8-9-50-51-Depot
R4: Depot-153-Depot

ESOGU_R20 * 9974.00 11,134.66

R1: Depot-35-119-116-115-cs8-10-45-Depot
R2: Depot-152-22D-7-6-Depot
R3: Depot-154-44-55-43C-Depot
R4: Depot-60A/2-62-74-82-64-61B-Depot

ESOGU_RC20 * 9161.00 11,113.25

R1: Depot-35-115-2-cs8-10-22D-Depot
R2: Depot-44-43C-42B-39-Depot
R3: Depot-152-153-51-50-45-Depot
R4: Depot-58/1-58/1-61B-64-82-62-Depot

ESOGU_C40 * 16,102.00 10,800.05

R1: Depot-25-1-5-2-8-15-Depot
R2: Depot-38-35-116-27-28-29-30-39-Depot
R3: Depot-44-60A/2-58/1-58/1-57-55-Depot
R4: Depot-49-120-18-17-22B-22C-Depot
R5: Depot-52-51-50-3-37A-Depot
R6: Depot-117-16-9-cs8-113-115-Depot
R7: Depot-152-42C-42B-41-Depot
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Table 3. Cont.

Instance Name Distance (m) CPLEX Time (s) Routes

ESOGU_R40 * 18,276.00 10,800.02

R1: Depot-10-11-12-13-23-20-Depot
R2: Depot-38-41-Depot
R3: Depot-46-24-22A-27-28-Depot
R4: Depot-74-76-124-88-cs3-73-60B/2-Depot
R5: Depot-119-1-113-125-8-Depot
R6: Depot-120-19-17-22C-21-Depot
R7: Depot-42A-42C-154-53-153-Depot
R8: Depot-43B-122-61B-64-57-44-Depot

ESOGU_RC40 * 17,053.00 10,800.02

R1: Depot-2-8-10-11-13-15-20-Depot
R2: Depot-19-17-cs8-125-113-115-1-Depot
R3: Depot-38-35-119-3-25-28-39-Depot
R4: Depot-49-50-120-21-24-22A-Depot
R5: Depot-42B-57-60B/2-55-Depot
R6: Depot-42C-152-153-Depot
R7: Depot-58/1-58/1-61B-64-76-124-51-Depot

ESOGU_C60 * 26,773.00 10,800.02

R1: Depot-3-25-115-1-36-37B-Depot
R2: Depot-10-23-16-21-Depot
R3: Depot-34-2-4-5-113-28-39-Depot
R4: Depot-38-30-18-19-118-Depot
R5: Depot-47-26-116-35-119-32-Depot
R6: Depot-49-14-9-12-13-22C-Depot
R7: Depot-56-61A/1-61B-65-70-71-Depot
R8: Depot-59-60A/2-60B/2-43C-31-40-Depot
R9: Depot-62-68-69-66-63-Depot
R10: Depot-154-53-52-42C-Depot
R11: Depot-42A-7-24-22D-22A-Depot

ESOGU_R60 * 26,159.00 10,800.03

R1: Depot-2-4-114-5-113-Depot
R2: Depot-16-8-cs8-12-13-23-20-Depot
R3: Depot-25-116-27-28-29-30-Depot
R4: Depot-38-40-41-50-Depot
R5: Depot-59-62-67-68-73-72-63-Depot
R6: Depot-74-65-122-56-57-60A/2-60B/2-Depot
R7: Depot-75-79-77-88-cs1-78-81-Depot
R8: Depot-123-82-84-52-Depot
R9: Depot-154-53-153-42A-Depot
R10: Depot-37A-45-19-22D-33-36-37B-Depot
R11: Depot-43A-44-43C-42B-Depot

ESOGU_RC60 * 27,905.00 10,800.02

R1: Depot-13-14-10-16-23-Depot
R2: Depot-25-26-116-27-28-Depot
R3: Depot-29-30-31-38-119-Depot
R4: Depot-34-114-5-113-8-4-Depot
R5: Depot-45-24-22D-22A-33-36-37B-Depot
R6: Depot-50-19-18-22C-21-Depot
R7: Depot-52-65-56-57-122-61A/1-61B-Depot
R8: Depot-77-79-88-cs3-60A/2-154-53-153-Depot
R9: Depot-43A-62-68-73-63-59-Depot
R10: Depot-43C-42B-40-Depot
R11: Depot-60B/2-78-123-81-Depot

* It is not the optimal solution. In large-scale problems, the mathematical model could not provide solutions in a
reasonable time. The results were obtained by CPLEX in a three-hour time limit. Exact solutions obtained for
problems with 5 and 10 customers.

Video in reference [38] shows the optimal route obtained by the mathematical model,
for ESOGU_C10 instance in the dataset. The obtained optimal routes are visualized in
SUMO. The routes for the ESOGU_C10 are as follows: R1: D-45-22A-CS8-14-D R2: D-CS4-
26-113-CS6-24-13-D R3: D-119-34-31-D. In video the route shown in yellow represents R1,
the route shown in red represents R2, and the route shown in blue represents R3.
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Mathematical models provide an exact formulation of routing problems, such as the
Electric Vehicle Routing Problem (EVRP), by explicitly defining constraints and objective
functions. In contrast, Q-learning transforms the same problem into a reinforcement learn-
ing framework, representing it through actions, states, and rewards. While mathematical
models aim to find an exact solution to the problem, the Q-learning algorithm approaches
the objective function value by conducting a learning process based on rewards and penal-
ties. In mathematical models, constraints are explicitly defined, and the solution is required
to strictly adhere to them. However, in Q-learning, these constraints are indirectly learned
through the reward function. While mathematical models yield exact solutions, Q-learning,
as a learning-based approach, produces solutions that improve and converge over time.
This feature is particularly advantageous for solving large-scale and complex problems
where exact methods may become computationally prohibitive.

6.2. Results of Proposed Q-Learning Algorithm

In the study, the proposed Q-learning model for the CEVRP is tested on the presented
ESOGU-CEVRPTW dataset. As the problem addressed does not include a time window
constraint, this constraint is disregarded in the dataset. The vehicle’s load capacity is 350 kg,
and the battery capacity is 3000 kWsec. A relatively small battery capacity is utilized to
ensure that the constraints related to visiting charging stations are effectively demonstrated
in the test environment.

The proposed method is tested on 15 instances from the dataset. In each instance,
the number of routes varies based on the number of customers and their demands. The
EV starts from the depot and satisfies the customers’ demands as long as its load capacity
permits. When the current load capacity is insufficient, the EV returns to the depot to
reload to full capacity. Additionally, if the EV’s charge level is insufficient to reach the
next customer while on the route, it is directed to the most suitable charging station for
a full recharge. The aim is to calculate the shortest distance route by complying with the
constraints of customer demand and the state of charge of the EV.

All the tests are performed on a desktop with i5-7500 CPU (3.40 GHZ and 12 RAM).
The code is written in Python 3.8. To evaluate the performance of the proposed model,
the model is trained and tested on various sample sizes ranging from n = 5 to 10, 20, 40,
or 60 client nodes. The training is performed using the hyperparameters summarized in
Table 4. The hyperparameters presented in Table 4 are determined through mutation-based
white-box testing, as described in [39]. The study [39] focuses on mutation-based tests
of a reinforcement learning (RL) model developed for electric vehicle routing, a Long
Short-Term Memory (LSTM) model, and a transformer-based neural network model. The
deep mutation module is a tool developed to assess the robustness and accuracy of deep
learning models. It can be utilized for various types of deep models, and since these models
employ distinct structures, the evaluation metrics used vary depending on the model type.
In RL models, metrics may vary depending on the model. Reward_max, a metric used
to find the most optimal route for electric vehicles, is used in the RL model. The module
classifies mutants as “killed” if these metrics decrease or “survived” if the opposite occurs.
The parameters gamma, alpha, epsilon, and decay for the RL model were selected and for
each parameter, 29, 40, 30, and 26 mutants were generated, respectively.
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Table 4. Training parameters.

Parameter Value

Number of episodes 20,000
Discount factor γ 0.6
Learning rate α 0.1

Max epsilon 1.0
Min epsilon 0.1

Epsilon decay rate 0.999

The learning curve presented in Figure 11 depicts the performance of the Q-learning
algorithm in minimizing the total distance traveled across multiple training episodes
for the ESOGU_RC60 instance. Data points are sampled and plotted every 20 episodes
to provide a comprehensive overview of the algorithm’s learning progression. Initially,
the total distance may exhibit higher values, reflecting the agent’s exploratory behavior
and suboptimal routing decisions. As training progresses, a general downward trend
is observed, indicating that the Q-learning agent is effectively learning and refining its
policy to achieve more efficient routes. This reduction in total distance over successive
episodes demonstrates the algorithm’s capacity to optimize routing decisions, thereby
enhancing overall performance. The stabilization of the curve toward lower distance
values suggests that the algorithm is approaching convergence, consistently identifying
near-optimal solutions for the CEVRP.
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The proposed method was tested on the ESOGU_CEVRPTW dataset, and the vehicle
capacity was accepted as 350 and the vehicle battery as 3000. The proposed method also
works on different datasets, such as a sparser dataset or for EVs with different battery
capacities. In addition, in order to show that the proposed method can work in situations
that require multiple charging stops on a route, an additional experiment was designed to
reduce the vehicle’s battery capacity and accept it as 1000. In this case, in order to proceed
even between two customers, the vehicle had to stop at more than one charging station.
When the EV battery capacity is 3000, the routes generated by the proposed algorithm are
“R1: D-35-32-115-2-CS9-D R2: D-42B-D” and the total distance is 3989.19 m. When the
battery capacity is 1000, the routes generated are “R1: D-32-CS8-115-2-CS9-CS7-35-D R2:
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D-42B-D” and the total distance is 4686.75 m. In this scenario, it is observed that the electric
vehicle requires multiple charging stops between two customer locations.

In this study, the proposed algorithm is compared with the mathematical model and
Double Deep Q-Network (DDQN) algorithm [29]. The DDQN is a reinforcement learning
algorithm and an enhancement of the conventional Deep Q-Network (DQN). The DDQN
employs two distinct networks, namely the main network and the target network, to
mitigate the overestimation bias that can arise during Q-value estimation. The DDQN
model is one of the effective reinforcement methods that has been widely applied in many
areas, especially in recent years, including routing problems (e.g., VRP, E-VRP, etc.). In
the literature, recent studies using the DDQN model for the VRP and EVRP can be found
in references [4,29,40]. The DDQN model presented in [29] was employed to solve the
CEVRP problem and compared with the proposed method in our study. Table 5 shows
the comparative results of the mathematical model, DDQN algorithm, and the proposed
Q-learning algorithm.

Table 5. Comparisons of proposed Q-learning solutions with optimal solutions and DDQN.

Instances

Optimal Solution DDQN

GAP

Proposed Q-Learning

Distance
(m)

Execution
Time (s)

Distance
(m)

Execution
Time (s)

Distance
(m)

Execution
Time (s) GAP

ESOGU_C5 3956.00 0.50 4203 0.2212 0.06% 3989.19 0.66 0.008%
ESOGU_R5 4977.00 0.53 5322 0.2368 0.06% 5064.28 0.67 0.01%
ESOGU_RC5 4944.00 0.41 5352 0.2404 0.08% 4944.00 0.71 0.0%
ESOGU_C10 5646.00 124.33 6705 0.3920 0.18% 5871.79 1.89 0.03%
ESOGU_R10 4889.00 389.74 5675 0.3960 0.16% 4898.02 2.48 0.001%
ESOGU_RC10 5843.00 345.63 6815 0.4011 0.16% 5851.72 2.26 0.001%
ESOGU_C20 9125.00 11,160.69 12,878 0.6067 0.41% 10,203.54 5.12 0.11%
ESOGU_R20 9974.00 11,134.66 13,373 0.5582 0.34% 10,292.60 5.15 0.03%
ESOGU_RC20 9161.00 11,113.25 11,977 0.6027 0.30% 10,082.14 4.76 0.10%
ESOGU_C40 16,102.00 10,800.05 22,483 2.5354 0.39% 17,358.23 17.26 0.07%
ESOGU_R40 18,276.00 10,800.02 24,882 2.0652 0.36% 20,906.46 12.74 0.14%
ESOGU_RC40 17,053.00 10,800.02 24,563 2.0283 0.44% 19,293.44 15.01 0.13%
ESOGU_C60 26,773.00 10,800.02 37,532 3.2772 0.40% 30,392.72 26.19 0.13%
ESOGU_R60 26,159.00 10,800.03 37,601 2.9562 0.43% 29,459.82 29.88 0.12%
ESOGU_RC60 27,905.00 10,800.02 38,699 3.0054 0.38% 30,143.03 33.31 0.08%

The proposed Q-learning model gives results close to the optimal solutions in small
test problems, as illustrated in Figure 12. Furthermore, the proposed Q-learning algo-
rithm outperforms the DDQN algorithm, yielding shorter total distances. This superior
performance can be attributed to the Q-learning algorithm’s ability to effectively balance
exploration and exploitation, thereby identifying more optimal routing paths.

Compared to the mathematical model, the proposed Q-learning model significantly
reduces the execution time. Large-scale problems can be solved in approximately 30 s, in
contrast to the 3 h required by the mathematical model. Thus, the proposed method demon-
strates markedly shorter execution times, as illustrated in Figure 13. In terms of execution
time, both the DDQN and Q-learning algorithms exhibit significantly faster computation
times compared to the mathematical model. While the mathematical model, despite pro-
viding optimal solutions, requires considerable computational resources and time, the
reinforcement learning approaches (Q-learning and DDQN) offer near-instantaneous solu-
tions. This substantial reduction in computation time underscores the practical applicability
of reinforcement learning methods in real-world logistics operations, where timely decision
making is crucial.
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Within the scope of last-mile delivery, algorithms capable of producing high-quality
solutions in a short time are critical for companies. Overall, the comparative analysis
highlights that the proposed Q-learning not only approximates optimal solutions with high
accuracy but also surpasses the DDQN in distance efficiency while maintaining superior
execution speed relative to traditional mathematical models. These attributes make Q-
learning a highly promising approach for solving the CEVRP in operational settings,
offering a balanced trade-off between solution quality and computational efficiency. This
study demonstrates that Q-learning can achieve near-optimal solutions in a significantly
reduced execution time.

7. Conclusions
Currently, with the accelerated transition from fossil fueled vehicles to electric vehicles

(EVs), research in the literature is focused on solving the Electric Vehicle Routing Problem
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(EVRP). This study addresses the Capacitated Electric Vehicle Routing Problem (CEVRP)
by proposing a novel Q-learning algorithm to optimize routing for electric vehicles.

The ESOGU-CEVRPTW dataset, which is based on real-world geographical data, is
introduced to provide a realistic test environment. The proposed method is evaluated using
the ESOGU-CEVRPTW dataset. The experimental results demonstrate that the proposed
Q-learning method is capable of generating near-optimal solutions in significantly shorter
computational times compared to traditional exact methods. These findings highlight the
algorithm’s potential for real-time applications in last-mile delivery and logistics planning,
particularly in scenarios where rapid decision making is critical. The integration of real-
world data into the model ensures that the solutions are not only theoretically sound but
also practically applicable, filling an important gap in the existing literature where synthetic
datasets are commonly used.

Despite its strengths, this study has certain limitations. The current Q-learning ap-
proach does not incorporate time windows (TWs), which are a critical constraint in many
real-world logistics scenarios. Future research is planned to focus on extending the Q-
learning framework to handle problems with narrow and wide time windows. Additionally,
deep reinforcement learning methods for solving the CEVRPTW will be addressed.
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14. Sarıçiçek, İ.; Yazıcı, A.; Aslan, Ö. A novel conflict free routing with multi pickup delivery tasks for autonomous vehicles. Robot.
Intell. Autom. 2023, 43, 191–206. [CrossRef]

15. Desaulniers, G.; Errico, F.; Irnich, S.; Schneider, M. Exact algorithms for electric vehicle-routing problems with time windows.
Oper. Res. 2016, 64, 1388–1405. [CrossRef]

16. Keskin, M.; Çatay, B. A matheuristic method for the electric vehicle routing problem with time windows and fast chargers.
Comput. Oper. Res. 2018, 100, 172–188. [CrossRef]

17. Lam, E.; Desaulniers, G.; Stuckey, P.J. Branch-and-cut-and-price for the electric vehicle routing problem with time windows,
piecewise-linear recharging and capacitated recharging stations. Comput. Oper. Res. 2022, 145, 105870. [CrossRef]
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