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Summary 

Data aggregation, in its basic form, has been widely used, and several solutions have been proposed for IoT environments. 

However, to calculate statistical metrics, detect anomalies, and predict future trends, we need to perform various data 

analysis functions on the aggregated data. Recently, multifunctional data aggregation (MFDA) has been proposed to 

calculate various statistical functions such as sum, mean, variance, covariance, and analyze of variance (ANOVA). The 

purpose of MFDA is to enable the improvement of decision making, resource allocation and system performance by 

providing diverse and varied statistical data. However, the existing solutions involving MFDA generate significant 

communication and calculation costs. Furthermore, they cannot prevent malicious aggregators from sending fake data. 

Recently, the Fog computing paradigm has been adopted in IoT environments to address various challenges and enhance 

the efficiency of data processing and storage. The blockchain technology has been integrated in various IoT applications 

to enhance the security, increase transparency, and facilitate decentralized data exchange and transactions. In this paper, 

we propose BMDA, a blockchain-based secure multifunctional data aggregation method for IoT-Fog environments. 

BMDA employs an encoding function to structure the data before their transmission. Furthermore, to ensure privacy 

preservation, authentication, data integrity and to resist malicious aggregators, we employ Paillier homomorphic 

encryption, BLS signature, and blockchain technology. The security analysis demonstrates the robustness of our proposal, 

and the performance analysis in terms of computations and communications shows the effectiveness of BMDA  compared 

to existing solutions. 

 

1. | INTRODUCTION  
 

The advancement of interconnected and communicative objects is an ongoing process. With an increasing number of 

products available on the market, the development of the Internet of Things (IoT) has created new areas for investigation in 

information and communication sciences. In this context, a significant volume of data is generated, requiring efficient filtering, 

processing, and utilization [1]. The rapid growth of IoT devices in an interconnected society poses challenges that drive the 

scientific community and researchers to propose solutions for effectively and securely managing the generated data [2]. Data 

aggregation is one of the solutions being explored to efficiently handle the transmitted data from IoT devices. As depicted in 

Figure 1, data aggregation involves bundling transmitted messages into a single one, which improves efficiency and reduces 

communication costs [3]. 



 

 
 

FIGURE 1 Data aggregation process. 

Fog computing has demonstrated its ability to host time-sensitive applications that require real-time data processing, 

highlighting the significance of secure and efficient data aggregation [4]. However, the integration of data aggregation in 

IoT environments, particularly within the context of Fog computing, introduces security challenges. The nature of IoT 

systems, characterized by inherent limitations and constraints, coupled with the distributed and interconnected nature of 

Fog computing, gives rise to potential vulnerabilities that must be addressed. Consequently, striking a balance between 

reaping the benefits of data aggregation and upholding the security of the aggregated data becomes crucial [5]. In Fog -

IoT environments, real-time user/device data is collected at regular intervals, for instance, every 10 minutes. This data 

can encompass highly sensitive information like health records, personal preferences, credit details, and behavioral 

patterns. Therefore, it is crucial to protect this data from unauthorized access.  

Existing data aggregation schemes in Fog-IoT environments [6]-[10], highlight the need to protect user/device data 

throughout the aggregation process. Many of these schemes employ homomorphic encryption to encrypt the user/device 

data, allowing the Fog node to aggregate the information without requiring decryption. Some s olutions adopt a similar 

approach but incorporate blockchain technology to introduce an extra layer of security for the final aggregate storage [11] -

[16]. However, these schemes only support basic aggregation operations, such as computing the summation of 

users/devices data. However, the control center (CC) may require more advanced statistical computations, such as 

calculating variance, co-variance and performing one-way ANOVA (Analysis Of Variance). The challenge lies in finding 

methods that allow the CC to compute advanced statistics on users/devices data without compromising the privacy of 

individual users, all while maintaining efficiency. This remains crucial in Fog-IoT environments. Implementing a robust 

security mechanism becomes a challenge due to the energy limitations of IoT devices. Many solutions [17] -[22] have 

been proposed to meet these issues, however, when considering the multifunctional aspect, they often incur significant 

communication and calculation costs. Additionally, they fail to provide protection against malicious aggregators 

transmitting false data.  

To address the aforementioned issue, we propose BMDA, a Blockchain-based Multifunctional Data Aggregation for 

Fog-IoT environments. BMDA employs an encoding function to structure the data obtained from IoT devices before 

transmission to Fog nodes for aggregation. Encryption and signature techniques are employed to secure struct ured data, 

allowing for simplified aggregation at the Fog node level and enabling efficient and secure recovery at the CC level. The 

data is encrypted using the Paillier cryptosystem and structured to accommodate multiple types of data within a single 

report message. The report comprises a set of statistical functions, including ANOVA, applied to the raw data. To provide 

enhanced security, we verify the correctness of the aggregation result before storing it in a blockchain. This verification 

is achieved by utilizing an improved version of the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm. The 

contributions can be summarized as follows. 

• We propose a novel approach to achieve multifunctional data aggregation by combining homomorphic encryption 

and an encoding function. This enables the control center to efficiently recover aggregated data from the ciphertext, 

conserving computational and communication resources compared to previous schemes. 

• We integrate blockchain technology into the network architecture to offer a strong defense against potential 

malicious aggregators attempting to send false data. Moreover, we enhance the traditional PBFT algorithm by 

incorporating a score-based technique that significantly improves the efficiency of the consensus phase, responsible 



 

for verifying the accuracy of the aggregation result. 

•  We provide an in-depth theoretical analysis and experimental evaluations. The security and performance analysis 

demonstrate that BMDA outperforms other methods in terms of computation and communication efficiency while 

maintaining the security properties. 

The structure of the article is organized as follows: Section 2 covers related work, Section 3 discusses models and 

design objectives, Section 4 presents preliminaries, Section 5 describes the proposed system, Sections 6 and 7 provide 

security and performance analysis, respectively, and finally, Section 8 concludes the article. 

 

2. | RELATED WORK  

 
In this section, we review previous research on secure multifunctional data aggregation and the enhancement of secure 

aggregation through blockchain integration within IoT-fog environments. 

 

2.1. | Secure Multifunctional Data Aggregation 
Recently, many solutions [17]-[22] have been proposed to calculate statistical metrics, detect anomalies, and predict 

future trends. These solutions provide diverse and varied statistical data to the CC. In [17], the authors propose secure 

one-dimensional aggregation (ODA) called MuDA, a multifunctional data aggregation scheme that addresses the security 

of smart grid data. Its primary objective is to allow the smart grid control center to utilize user data for calculating multiple 

statistical functions while ensuring user privacy. The scheme employs the BGN cryptosystem to protect sensitive data. 

Unlike many other secure data aggregation techniques, MuDA is designed to withstand differential attacks. Chen et al 

[18] introduce a secure multidimensional aggregation (MDA) approach using the Paillier cryptosystem. With this 

aggregation system, a utility supplier can obtain overall consumption data from all smart meters while unable to access 

consumption information from individual smart meters. The proposed scheme allows the smart meter to transmit various 

types of data in a single report message, enabling the provider to perform ANOVA analyses on the data. Privacy is ensured 

using the Paillier cryptosystem, multidimensional data is structured using the Super Increasing Se quence, and data 

integrity and authenticity are maintained through signature. In [19], the authors suggest a smart and practical Privacy -

preserving Data Aggregation (PDA) scheme with a smart pricing and packaging approach for fog-based smart grids. This 

scheme enables diverse tariffs, multipurpose statistics, and efficiency. In the initial implementation of the smart PDA 

system incorporating intelligent pricing, the control center can generate more intricate and advanced aggregate data, 

facilitating the provision of various services, implementation of different pricing methods, and adoption of a mutually 

beneficial PDA scheme with Smart Pricing (PDA-SP). A feasible PDA scheme with a packing method (PDA-PM) is 

proposed, which reduces the quantity and size of encrypted data and enhances efficiency during secure operations. This 

solution employs somewhat homomorphic encryption (SHE) and a packaging technique to reduce computation and 

communication costs. The authors of [20] present LPM2DA, a lattice-based privacy-preserving multifunctional and 

multidimensional data aggregation technique. Their objective is to protect privacy while providing other security services 

for the smart grid, such as integrity and authentication. The proposed method allows the control cen ter to collect spatially 

and temporally aggregated multidimensional data while preserving privacy. Additionally, their system enables the 

computation of several statistical functions, including mean, variance, and skewness, on the users' multidimensional data. 

Privacy is ensured using a homomorphic scheme called SHIELD (scalable homomorphic implementation of encrypted 

data-classifiers), based on the ring variant of the LWE (learning with error). Multidimensional data is structured using the 

Chinese remainder theorem, and data integrity and authenticity are guaranteed using a lattice-based digital signature from 

the ringLWE. In [21], Qiyu et al. suggest SEMDA (Secure and Efficient Multifunctional Data Aggregation), which is a 

multifunctional, and fine-grained data aggregation method integrated with lightweight cryptographic techniques. 

Considering the potential privacy risks associated with the close connection between IoT data, they enhance SEMDA to 

provide differential privacy. Their solution is based on the honest but curious model and provides confidentiality, privacy, 

integrity, and authentication. Privacy is ensured using the Castelluccia cryptosystem, and data integrity and authenticity 

are protected using MAC (Message Authentication Code). To strike a balance between data accessibility and privacy, the 

authors of the solution presented in [22] propose a multifunctional and multidimensional secure data aggregation system. 

They initially proposed a Chinese remainder theorem conversion method using a counter, which can be employed by 

linear homomorphic encryption algorithms to convert multidimensional data into a large integer. They then introduce a 

multifunctional data analysis technique that supports various aggregation functions, including continuous, lin ear, and 

polynomial functions. The authors demonstrate that the proposed method ensures privacy, integrity, authentication, and 

resistance against attacks, including false data injection. Privacy is preserved using the Paillier cryptosystem, 



 

multidimensional data is structured using the Chinese Remainder theorem, and data integrity and authenticity are ensured 

using the Schnorr signature. 

2.2. | Blockchain-based solutions for data aggregation 
The integration of edge computing and fog computing with blockchain technology in IoT environments has recently garnered 

significant interest to enhance efficiency and data integrity [23], [24], as well as ensure the secure aggregation of data [11]-[16]. 

This integration yields fortified security measures by leveraging the inherent attributes of transparency, immutability, traceability, 

and non-repudiation that the blockchain offers. To mitigate the negative effect of intense and sudden workload on the precision of 

prediction models, the authors in [11] propose an approach that combines deep learning, blockchain technology, and homomorphic 

encryption for data aggregation and preserves user privacy. This model is efficient in identifying smart meter manipulation and 

provides a low-cost, secure method for data aggregation. In [12], the authors propose EBDA, which stands for Edge Blockchain-

assisted lightweight privacy-preserving Data Aggregation. The authors present a three-layer architecture that combines edge 

computing and blockchain technology. This architecture enables a more efficient and secure two-level data aggregation approach. 

The design goals are achieved by employing the Paillier cryptosystem, the one-way hash chain, and BLS signatures. The solution 

[13] proposes a blockchain-based novel paradigm, BNPP, for fair and secure smart grid communication. The contributions of the 

proposed solution include a lightweight data aggregation protocol that ensures user data privacy and communication 

confidentiality. An efficient non-interactive authentication mechanism is introduced, leveraging session keys for MAC 

authentication to ensure data integrity. The solution also incorporates a blockchain node consensus mechanism based on a 

subjective logic reputation model, addressing the storage of smart grid big data and mitigating single-point failure issues. The 

authors in [14] propose an efficient and reliable blockchain-based multidimensional data aggregation approach. Their proposal 

involves selecting a mining node from all smart meters to collect data using a leader election mechanism in the Raft protocol. To 

enable flexible dynamic user management, they employ a secret sharing homomorphism approach that can be dynamically verified. 

Their system supports multidimensional data aggregation, and fault tolerance, and withstands internal and external attacks. Design 

goals are achieved using the Threshold Verifiable Secret Sharing Homomorphism Scheme and the Schnorr signature. For a fog-

enabled smart grid called DA-SADA, the authors of the solution presented in [15] propose a dual blockchain-assisted secure and 

anonymous data aggregation method. They establish a three-tier architecture-based data aggregation system specifically designed 

to enable secure and efficient data collection in smart grids, integrating blockchain technology and fog computing. The proposed 

mechanism ensures safety and anonymity by concurrently utilizing Paillier encryption, batch aggregation signature, and 

anonymous authentication, with minimal computational complexity. In [16], the authors propose a blockchain consortium-based 

system for smart grid data aggregation and regulation. The signcryption technique of the consortium blockchain applies to multiple 

receivers and multidimensional data collection. During the regulatory process, the control center, grid operator, and equipment 

supplier receive fixed-height blocks from the blockchain and plaintext from the encryption. Each receiver examines the 

multidimensional data and develops relevant control strategies for specific users. Grid administrators integrate user power 

regulation using smart contract feedback. 

2.3. | Discussion 
TABLE 2 compares the aforementioned works in terms of design goals, encryption methods, signature schemes, data 

types, use of the blockchain, and multifunctional aspects. The list of the acronyms and their definition is presented in 

TABLE 1. The aforementioned solutions [17]-[22] demonstrate support for the multifunctional aspect, but they exhibit 

performance limitations. The computation of statistical functions is dependent on individual requests for each function, 

leading to excessive communication and computational overhead. Additionally, these solutions do not leverage the 

blockchain paradigm for storing aggregates. Conversely, the solutions [12]-[16] incorporate blockchain technology to 

enhance aggregate security, but they lack multifunctional support and are limited to sum aggregation calculations, thereby 

limiting the potential utility of the aggregated data. To address these limitations, we propose a solution that combines 

multifunctional data processing and blockchain-based aggregate storage. We employ an encoding function to organize the 

data, enabling the calculation of multiple statistical functions within a single aggregation round. This approach 

significantly reduces both computational and communication overhead, enhancing the overall efficiency of the system.   

TABLE 1 Summary of acronyms 

Acronyms Definition 

MF Multifunctional 

PP Privacy-Preserving 

EFF Efficiency 

INT Integrity 

AUTH Authentication 

MA Multiple Aggregation 

ROB Robustness 

NTA No Trust Authority 

MFN Multi-Function 

FG Fine-Grained 

MD Multidimensional 

HU High Utility 

FT Fault Tolerance 



 

IA Identity Anonymity 

MAD Malicious Aggregator Detection 

CONF Confidentiality 

RAA Resistance against attacks 

Non-Re Non-repudiation 

 

3. | MODELS AND DESIGN GOALS   

 
In this section, the system and attacker models will be introduced, along with the design objectives. The system model 

outlines the architectural framework of the proposed BMDA system and highlights the role of IoT devices, Fog nodes, 

blockchain, and the control center in achieving secure and efficient multifunctional data aggregation. Additionally, the 

TABLE 2 Comparative analysis of previous works 
 

Scheme Design Goals Encryption 

Method 

Signature 

Scheme 

Data 

type 

Multifunctional Blockchain Advantages Shortcomings   

 

[17] 

 

MF, PP, EFF 
 

BGN 

 
- 

 
ODA 

 

√ 

 

- 

Flexibility and 

Customization 
Security 

Enhancements 

 

Communication 
Overhead 

  

 

 

[18] 

 

PP, INT, AUTH, 

EFF, MA 

 

 

Paillier 

 

Pairing-
based 

Signature 

 

 

MDA 

(SIS) 

 

 

√ 

 

 

- 

 

Efficiency 
Versatility 

Security 

 

Complexity 
Scalability 

Verification Process 

  

 

[19] 
 
PP, Diversified 

tariffs, MF, EFF 

 
SHE 

 

- 

 

ODA 

 

√ 

 

- 

Smart Pricing 

Strategies 
Security 

 

Complexity 
Storage Overheads 

  

 

 

[20] 

 

PP, INT, AUTH, 

RAA 

 

 

SHIELD 

 

Lattice-

based 
signature 

 

 

MDA 

(CRT) 

 

 

√ 

 

 

- 

 

Temporal and 

spatial 
aggregations 

 

Complexity, 

Computational 
Costs 

  

 

[21] 

EFF, ROB, NTA, 

MFN, FG 

 

Castelluccia 

 

MAC 

 

ODA 

 

√ 

 

- 

Efficiency 

No Trusted 
Authority 

Keys exchange 

complexity 

  

 

[22] 

 

Security, EFF, MD, 

MF 

 

Paillier 

 

Shnorr 

signature 

 

MDA 

(CRT) 

 

 

√ 

 

 

- 

 

Versatility 

Security 

 

Computational 

Costs 

Scalability 

  

 

[12] 

 

CONF, INT, AUTH, 

ROB, PP, EFF 

 

Paillier 

 

BLS 

 

 

MDA 

(SIS) 

 

- 

 

 

√(DVAC) 

 

Adaptability 

Resistance to 

Attacks 

 

Computational Costs 

  

 

[13] 

 

PP, INT, CONF, HU, 

Fairness 

 

Modular 

Addition 

Encryption 

 

BLS 

 

ODA 

 

- 

 

√ (PBFT) 
 

High Utility 

Fairness 

 

Complexity 

  

 

 

 

[14] 

 

 

CONF, PP, AUTH, 

FT, NTA, RAA 

 

 

Secret sharing 

homomorphism 

scheme 

 

 

Shnorr 

signature 

 

 

MDA 

(CRT) 

 

 

 

- 

√ 

Leader 

election 

algorithm 

in the Raft 

protocol 

 

Security 

Dynamic User 

Management 
Fault Tolerance 

 

Complexity 

Scalability 

Resource 
Requirements 

  

 

 

[15] 

 

 

PP, AUTH, INT, 

CONF, IA, ROB 

 

 

Paillier 

 

 

Batch 

aggregati

on 
signature 

 

 

 

ODA 

 

 

- 

 

 

√ (PBFT)  

 

 

 

Enhanced 

Security 
Decentralizatio

n 

 

 

Complexity 

Scalability 
Resource Intensive 

  

 

[16] 

 

CONF, INT, Non-

Re, Regu 

 

HYBRID SIGNCRYPTION 

 

MDA 

 

- 
 
√(Smart 

Contract) 

Enhanced 

Security 
Flexible 

architecture 

 

Scalability 
Complexity 

 

Scalability 
Complexit

y 

 

 

 

BMDA 

 

PP, INT, AUTH, 

CONF, MAD, MF, 
EFF, HU 

 

Paillier 

 

BLS 

 

ODA/

MDA 

 

√ 

 

√ 

(Enhanced 
PBFT) 

 

Efficiency 

Security 
Performance 

Scalability 

 

 

 

- 

  

 

 



 

attacker model delineates potential threats from malicious entities, including malicious aggregators and external attackers, 

and clarifies their objectives and capabilities. Furthermore, the design objectives articulate the fundamental principles 

guiding the development of the system, encompassing privacy preservation, data integrity, confidentiality, efficient  

aggregation, and resilience against various attack vectors. Through a comprehensive understanding of these models and 

objectives, we aim to establish a robust foundation for the subsequent discussion and evaluation of the proposed system.  

 

3.1. | System model 
 

While the majority of previous solutions that leverage Fog architecture employ a three -level architecture for their 

aggregation scheme, the proposed BMDA system takes a distinct approach by utilizing a four-level architecture. At the first 

level, numerous IoT devices (IoTd ij) are present, followed by Fog nodes (FN j) at the second level, blockchain (BC) at the 

third level, and the control center (CC) at the fourth level, as depicted in Figure 2. In this system, the CC has direct access to 

the aggregated data by querying the BC. Each FN is assigned the responsibility of covering a subset of IoT devices. The BC, 

in contrast, is responsible for storing the aggregated data and maintaining direct links to the  Fog Nodes. 

 

Each IoTdij collects the data, encodes it, performs cryptographic operations (encryption and signature), and subsequently 

delivers a report to the corresponding FN j. Upon receiving the reports, the node FN j undertakes report verification and 

homomorphically aggregates them to ensure confidentiality. Subsequently, at the initiation of the consensus phase during the 

PRE-PREPARE step, it disseminates these reports to other Fog nodes within the consensus group. This facilitates the 

computation of an aggregate copy, aiding in the detection of fraud related to the malicious aggregator. It is the responsibility 

of each FNj to initiate the consensus process (PBFT) and to add the resulting aggregate to the blockchain, while the other 

nodes act as consensus members participating in the leader-initiated voting mechanism. Once consensus is reached, and the 

new block is irrevocably added to the blockchain, the CC directly accesses the blockchain by performing decryption, thereby 

obtaining the result of the multifunctional aggregation. We consider a Trust Authority (TA), which is a fully trusted entity, 

responsible for generating the public/private keys used in the Paillier cryptosystem, as well as other secret parameters. 

However, once all system entities have gained access to the necessary secret parameters, the involvement of TA becomes 

unnecessary.  

 
FIGURE 2 System Model. 

3.2. | Attacker Model 
 

     In the attacker model, we assume that FNs and CCs are honest but curious, IoT devices are honest and reliable, and 

external attackers are motivated to breach networks and access confidential data. False data injection attacks can manifest 

through the falsification or interception of user data during communication. The security considerations are as follows. 

 

• FNs (Fog Nodes) and CCs (Control Center): These entities are assumed to be honest but curious, meaning they 

faithfully adhere to the protocol while exhibiting an interest in the data provided in the reports.  

• A malicious aggregator node can actively participate in the data aggregation process to cause harm or act 



 

maliciously. Its primary objective is to alter, falsify, or manipulate the aggregated data, thereby compromising the 

integrity and reliability of the aggregation results. 

• IoT devices: These devices are considered honest and trustworthy, as they do not generate or transmit false data 

intentionally. 

• External attackers: The existence of external attackers is acknowledged, and their objective is to infiltrate networks 

and gain unauthorized access to confidential data. They can eavesdrop on communication streams and attempt to 

identify the content of the reports.  

• False data injection attacks: Involve the insertion of fabricated or manipulated data into the system, aiming to 

compromise the integrity and reliability of the information being processed.  

 

3.3. | Design Goal 

The design goal is to achieve secure data aggregation for the Internet of Things, ensuring that the CC can obtain real-

time multifunctional data from a single aggregated source. To achieve this objective, the following key requirements must 

be met. 

• Privacy-preserving: It is essential to maintain the privacy of individual data from IoT devices, even in the face of 

potential attacks. The CC should only have access to the aggregated plaintext stored in the blockchain, without direct 

access to user-specific information. Consequently, privacy breaches must be prevented. 

• Integrity and Authentication: Ensuring data integrity involves detecting any anomalies or alterations that might occur 

during data transmission. Authentication, in contrast, focuses on validating the source of the data. This enables the Fog 

nodes and the CC to identify any modifications made to the reports. 

• Malleability:  End-to-end integrity ensures that data remains unaltered and reliable from its creation to its final use, 

ensuring trust in the system. 

• Confidentiality: Data confidentiality must be maintained throughout the data transmission process, even when potential 

eavesdropping attackers are present. This necessity arises from the fact that intercepted communication channels should 

not grant unauthorized access to the user's confidential information. 

• Malicious aggregator detection: The system should be capable of identifying a malicious aggregator that tries to insert 

false aggregation results into the communication. 

• Multifunctional: The aggregated data should enable the CC to calculate various statistical functions, including sum, 

average, variance, co-variance, and ANOVA. This multifunctionality enables a more thorough statistical analysis of 

the data. 

• Efficiency: Emphasizing the efficient utilization of resources, the proposed scheme should aim to minimize both 

computation and communication overhead in the IoT network. Efficiency optimization is crucial for resource 

optimization. 

• High usefulness: The proposed system leverages the resilience and stability provided by blockchain technology, 

utilizing its secure data storage capabilities to effectively address the longstanding issue of single-point failure that is 

prevalent in traditional systems. By capitalizing on the advantages of blockchain, the system should enhance its overall 

usefulness and reliability. 

 

4. | PRELIMINARIES  

 
In this section, the security algorithms used in the BMDA solution are briefly presented, such as Paillier's homomorphic 

encryption, BLS signatures based on bilinear pairings, and the PBFT algorithm. 

 

4.1. | Homomorphic encryption aggregation 

Homomorphic data aggregation [25] is a processing method that allows operations to be performed on encrypted data without 

the need to first decrypt it. This approach ensures information confidentiality throughout the aggregation process, providing robust 

protection against security threats. By utilizing specially designed encryption schemes with homomorphism properties, 

calculations can be performed directly on the encrypted data, thereby preserving its confidentiality. This technique has applications 

in many areas, including smart grids, healthcare, finance, and telecommunications, where data confidentiality is of paramount 

importance. 

4.2. | Paillier homomorphic cryptosystem 
 



 

The Paillier Encryption Algorithm [26] is a public-key cryptography system based on asymmetric cryptography. It uses 

a modulo N to encrypt messages, where N is a randomly generated prime number. It is considered homomorphic because it 

allows operations to be performed on encrypted messages without having to decrypt them. This means that arithmetic 

operations can be performed on encrypted messages while maintaining data security. Here are the basic steps of the Paillier 

encryption algorithm: 

• Key generation: Firstly, two random prime numbers p and q are chosen. The security of the system depends largely on 

the size of these prime numbers. Next, the product of these two prime numbers is calculated to obtain n = p * q, and the 

Euler's totient function φ(n) is also calculated, where φ(n) = (p - 1) (q - 1).  After an integer g is chosen such that g is a 

generator of ℤn2
∗ , where ℤn2

∗  is the set of natural numbers between 1 and n² - 1 that are coprime to n². Then the value λ is 

calculated as follows: λ = lcm (p - 1, q - 1) = (p-1) (q 1) / gcd (p - 1, q - 1), where lcm is the least common multiple and 

gcd is the greatest common divisor. Afterward, μ which is the modular inverse of the value of the function L(x) = (x - 1) 

/ n, is computed modulo n. In other words, μ is the integer that satisfies the congruence L(μ) ≡ 1 (mod n).  This enables 

efficient decryption of encrypted messages. Finally, the public key consists of two elements: n and g. The private key 

consists of two elements: λ and μ. 

• Encryption: To encrypt a message m ∈ ℤn, the transmitter calculates the encrypted message C = E(m) = gm * rn mod 

n2, where r ∈ ℤn
∗  is a random number. 

• Decryption: To decrypt an encrypted message C, the recipient uses the private key to calculate m = D(C) = L(cλ mod 

n2) μ mod n. 

4.3. | BLS signature scheme 
 

Boneh-Lynn-Shacham (BLS) short signature scheme [27] is a typical bilinear pairing scheme, which uses SHA-256 hash 

function H1: {0, 1}∗ → G1 and g is a random generator of G1, and a bilinear map e: G1 × G1 → G2. Here are the basic steps of 

the BLS signature algorithm: 

• Key generation: The secret key is x ∈ 𝑍𝑞
∗, and compute the public key PK = x * g. 

• Signature generation: The plaintext m ∈ G1, compute the signature σ = x * H(m). 

• Signature verification: If e (σ, g) = e(H(m), PK), then the signature is verified. Otherwise fails. 

4.4. | Blockchain and the PBFT algorithm 
 

The blockchain, introduced in 2008 [28], facilitates secure information exchange among nodes without relying on a central 

authority. It comprises a linear collection of interconnected blocks using a hash function. Consensus algorithms ensure the 

acceptance or rejection of new blocks. The blockchain's advantages have made it a popular technology in various IoT contexts. 

This paper focuses on using a hybrid blockchain that combines the transparency and immutability of a public blockchain with 

the confidentiality of a private blockchain, aiming to maintain data confidentiality while allowing stakeholders to verify 

transaction validity.  

• The Practical Byzantine Fault Tolerance (PBFT) Consensus Process 

The Practical Byzantine Fault Tolerance (PBFT) [29] consensus process is utilized. PBFT is a fault-tolerant consensus 

protocol designed for distributed systems in the presence of Byzantine faults. Introduced by Castro and Liskov in 1999, PBFT 

involves a master node proposing a block of transactions to a group of nodes. The nodes validate the proposal before reaching 

a consensus and appending the block to the blockchain. PBFT ensures consensus on block validity and provides resistance 

against malicious attacks and node failures.  

The steps of the algorithm are illustrated in Figure 3 and are as follows. 

• Client Request: Upon receiving a client request, the primary node broadcasts the request to all other nodes. 

• Request Validation: Each node verifies the validity of the received request. If deemed valid, every node transmits a 

"prepare" message to all other nodes. 

• Prepare Phase: Each node evaluates whether a sufficient number of nodes have issued a "prepare" message for the 

specific request. 

• Commit Phase: Upon meeting the required threshold, each node sends a "commit" message to all other nodes. 

• Request Execution: Each node verifies if a sufficient number of nodes have transmitted a "commit" message for the 

corresponding request. Upon satisfying the required condition, each node executes the request and communicates the 

outcome back to the client. 



 

• Failure Handling: If a node fails to receive the necessary count of "prepare" or "commit" messages for a given request, 

it deems the request invalid. 

 

 

FIGURE 3 PBFT consensus process. 

 

5. | THE PROPOSED SCHEME   

 
In this section, we present the sequence of steps of the proposed scheme, called BMDA. The scheme consists of six steps, 

namely System initialization, Registration, IoT device report generation, Secure data aggregation, Secure Data Storage, and 

finally, Data decryption and reading. TABLE 3 provides a comprehensive list of abbreviations and symbols utilized in this 

article, along with their corresponding definitions. 

 

TABLE 3 Summary of notations 
 

Symbol Definition 

ODA 

MDA 

MFDA 

CC 

One-dimensional aggregation 

Multidimensional aggregation 

Multifunctional aggregation 

The control center 

FN The fog node 

CNj The PBFT consensus node 

BC The Blockchain 

IoTd The IoT device 

n The modulus n = p0.q0 

g The generator of ℤn2 

G1 An additive group 

G2 A multiplicative group 

(n,g) The public key pair 

(λ, μ) The private key pair 

e A bilinear pairing 

H A secure hash function 

K The number of shared keys 

k1 The number of IoTd covered by one FN 

k2 The number of FN covered by CC 

pkij The public key of IoTdij 

skij The secret key of IoTdij 

pkCNj The public key of FNj for PBFT 

skCNj The secret key of FNj for PBFT 

mij The data of IoTdij 

dij The encoded data of IoTdij 

S The number of strategies  

z The maximum number of bits that represent mij 

W Encoding function output (bits) 

5.1. | System initialization 

 



 

We consider in the proposal that the trusted authority (TA) is responsible for bootstrapping the whole system. It is a fully 

trusted entity. It provides all system entities with the necessary secret parameters. After that, TA is not required for the aggregating 

process. 

 

• Paillier Parameter: According to the security level, the TA selects p and q, two prime numbers, at random and distinct 

from one another such that gcd (p * q, (p - 1) * (q -1)) = 1, and calculate n = p * q and λ = lcm (p - 1, q-1). The TA then 

builds a function L(u) = u - 1/n and computes μ = (L(gλ mod n2)) − 1 mod n where g is the generator of ℤn2
∗  such that 

gcd(L(gλ mod n²), n)=1. The public key for encryption is (n, g), and (λ, μ) represents the private key. 

• Bilinear parameter: TA produces the bilinear parameters (q, P, G1, G2, e) from the security parameter k by running the 

bilinear parameter generator Gen (k). Then, TA introduces a safe cryptographic hash function: H: {0, 1}* G1. 

• Blockchain parameter: The TA initializes all Fog nodes where each node has a score of 100. It then divides them into a 

set of consensus nodes and a set of candidate nodes. When nodes are initialized, the order of all nodes is random. 
 

5.2. | Registration 
 

All system entities, including all IoT devices (IoTdij), Fog nodes (FNj), and the control center (CC), must be registered in the TA. 

• Registration of CC:  The CC first chooses an IDCC identity. The tuple (λ, μ) is then transmitted by TA. 

• Registration of FNj: The FNj initially selects an identity IDj (for all j ∈ {1,2, ..., k2}). Then, TA determines pkCNj = skCNjP 

by selecting an integer at random skCNj ∈ ℤq
∗ . The TA then safely sends skCNj to FNj 

• Registration of IoTdij: The IoTdij initially selects an identity IDij (for all i ∈ {1,2, ..., k1}). Then, TA determines pkij = skijP 

by selecting an integer at random, skij ∈ ℤq
∗ . The TA then safely sends skij to IoTdij. At the end of this step, the trusted 

authority publishes the public parameters to guarantee the proper functioning of the system: {e, q, n, g, P, pkij, pkFNj, 

pkCNj, G1, G2, H}. 

 

5.3. | IoT device report generation 
 

It is assumed that each IoT device (IoTdij) periodically submits its gathered data (e.g., every 15 minutes) to its corresponding 

Fog node. In the transmitted message, the IoT device includes both the collected data and its corresponding squared value. Notably, 

to ensure enhanced information security during transmission, the message undergoes encryption and digital signature calculations. 

The different steps are as follows. 

 

• Step-1: As shown in Figure 4, representing the data encoding process, each IoT device IoTdij undertakes the encoding 

process by adding to the predefined structure the captured data (mi), its squared value (mi²), and a constant value of 1. 

This approach facilitates subsequent calculations and ensures the inclusion of necessary information within the encoded 

representation. 

 
 

FIGURE 4 Encoding function for BMDA. 

Due to squaring, the required bits for mij² cannot be greater than 2z, where z is the maximum number of bits that can represent 

the data mij. 

• Step-2: After randomly choosing a number rij belonging to ℤn
∗ , the IoT device IoTdij calculates the ciphertext. 

 

𝐶𝑖𝑗 =  𝑔𝑑𝑖𝑗 . 𝑟𝑖𝑗
𝑛 𝑚𝑜𝑑 𝑛2                                                                                (1) 



 

 

• Step-3: The IoT device computes the digital signature using its private key skij as follows: 

 

𝑆𝑖𝑔𝑖𝑗 =  𝑠𝑘𝑖𝑗𝐻(𝐶𝑖𝑗||𝐼𝐷𝑖𝑗||𝑇𝑆)                                                                        (2) 

 
• Step-4: Each IoT device sends its report (Reportij) to the corresponding Fog node. The report contains the following 

information {Cij, TS, IDij, Sigij} where Cij represents the encrypted message sent, TS represents the Timestamp, IDij 

represents the identifier of the IoT device, and finally, Sigij represents the digital signature. 

 

5.4. | Secure data aggregation 
 

Following the reception of the reports, each Fog node proceeds to a batch verification to verify the validity of the signatures 

received, they verify the following equality: 

 

𝑒(𝑃, ∑ 𝑆𝑖𝑔𝑖𝑗
𝑘1
𝑖=1 ) =  ∏ 𝑒 (𝑝𝑘𝑖𝑗 , 𝐻(𝐶𝑖𝑗||𝐼𝐷𝑖𝑗||𝑇𝑆))

𝑘1
𝑖=1                                                     (3) 

 

It is important to note that the batch verification technique is employed to optimize calculations, reducing the number of pairings 

required from 2k1 to k1+1. This reduction significantly lightens the computational overhead. 

In addition to the data and their squared values, the reports received by each Fog Node (FN) also include a "1" indicator. This "1" 

serves the purpose of quantifying the number of IoT devices that have transmitted their reports, enabling subsequent statistical 

calculations to be performed. 

After checking the validity, FNj aggregates all the ciphertexts. The resulting aggregate consists of three parts 

(∑ 1
𝑘1
𝑖=1  || ∑ 𝑚𝑖𝑗

2 || ∑ 𝑚𝑖𝑗
𝑘1
𝑖=1

𝑘1
𝑖=1 ). The following steps are executed. 

 

• Step-1: The Fog node FNj aggregates the n encrypted reports as follows: 

 

𝐶𝑗 =  ∏ 𝐶𝑖𝑗𝑚𝑜𝑑 𝑛2𝑘1
𝑖=1                                                                                  (4) 

 

𝐶𝑗 =  ∏ 𝑔𝑑𝑖𝑗 .  𝑟𝑖𝑗
𝑛 𝑚𝑜𝑑 𝑛2

𝑘1

𝑖=1
 

 

𝐶𝑗 =  𝑔∑ 𝑑𝑖𝑗𝑚𝑜𝑑 𝑛
𝑘1
𝑖=1 . (∏ 𝑟𝑖𝑗

𝑘1

𝑖=1
)

𝑛

𝑚𝑜𝑑 𝑛2 

 

• Step-2: The Fog node FNj prepares the report containing the information {Cj, TS, IDj} where Cj represents the encrypted 

aggregate, TS represents the Timestamp, and finally, IDj represents the Fog node identifier. 

• Step-3: The Fog node securely stores the aggregate in the blockchain via the PBFT consensus process (See section 5.5). 

Figure 5 illustrates an example of the resulting aggregate using the encoding function. 

 



 

 
 

FIGURE 5 The resulting aggregate using encoding function. 

5.5. | Secure data storage 
 

After computing the aggregate, every Fog node FNj utilizes the Practical Byzantine Fault Tolerance (PBFT) algorithm to 

securely store the aggregate in the blockchain. It is worth noting that each Fog node serves as the primary node for its respective 

aggregate (It directly integrates the consensus group if it is not part of it). Unlike alternative approaches that involve an additional 

consensus layer [14], the proposed solution designates Fog nodes to fulfill the role of consensus nodes as well. The enhanced 

version of the PBFT algorithm incorporates a scoring model and mainly consists of three key phases: Initialization, Block 

generation and verification, and Fog node reputation update. 

Algorithm 1 presents the pseudocode for the Weighted Practical Byzantine Fault Tolerance (W-PBFT) consensus algorithm, 

while Figure 6 illustrates the main process. 

 

a. Initialization:  

Since the scores are predetermined by the TA, and the Fog nodes are categorized into Consensus nodes and candidate nodes, 

the set of consensus nodes is responsible for conducting the consensus process. In contrast, candidate nodes only update their local 

states upon reaching consensus, without actively participating in the consensus process. The system consists of N nodes, with a 

maximum allowed number of Byzantine nodes f. It is assumed that there are k2/2 candidate nodes, and the number of consensus 

nodes must satisfy CN ≥ 3f + 1 to ensure that the system can reach an agreement in all scenarios. Hence, we set the number of 

consensus nodes to be k2/2.  

 

b. Block generation and verification: 

According to PBFT, CNj completes block generation and data verification. The active CNj participating in the consensus 

process represents k2/2 of the number of Fog nodes in the network. The specific process is mainly divided into five steps, namely 

Request, Pre-prepare, Prepare, and Commit. 

 

• Request: In the proposed approach, the primary node fulfills the roles of both the client and the initiator of the consensus 

process. In this configuration, the request step may initially appear redundant since the primary node does not need to 

receive a transaction request from an external client. However, even in this scenario, the first step holds significance as it 

allows for the assignment of a sequence number to the transaction. The primary node is responsible for assigning a unique 

sequence number to the transaction, which serves as its identifier throughout the subsequent stages of the consensus 

process. This sequence number plays a crucial role in ensuring that transactions are added to the blockchain in the order 

in which they were proposed. To achieve this, the primary node initiates the consensus process by sending a PRE-

PREPARE message (PPM), following a series of steps. The remaining nodes in the network, acting as consensus nodes, 

then proceed with the prepare, and commit steps to successfully commit and add the proposed aggregate to the blockchain. 

 

• Pre-prepare: Following the conclusion of the Request stage, the primary node proceeds to the pre-preparation stage. In 

this stage, the primary node initiates communication by transmitting PPM to the remaining consensus Fog nodes, 

designated as CNj, representing k2/2. These are the nodes actively participating in the consensus process. The PPM 



 

contains information on the block, the encrypted aggregate, and the data acquired from the IoT devices. The PPM is then 

sent across the network to encompass all participating consensus nodes. This action involves the following steps: 

o Step-1: The primary node calculates the signature of the proposed block as follows: 

 

𝑆𝑖𝑔𝑃0 =  𝑠𝑘𝐶𝑁𝑗
𝐻(𝑣𝑖𝑒𝑤𝐼𝐷||𝑠𝑒𝑞𝑛𝑢𝑚||𝐸𝑎𝑔𝑔||𝐷𝐴𝑇𝐴)                                                    (5) 

Where DATA = Report1||Report2||…||Reportij   

 

o Step-2: The primary node broadcasts a PRE-PREPARE message containing PPM <viewID, Seqnum, Eagg, SigP0, 

DATA> to all consensus nodes. 

• Prepare: Upon receiving the PPM from the primary node, each consensus node in the network embarks on the initial 

verification of individual BLS signatures to ensure their legitimacy, employing a batch verification process.  

Subsequently, mirroring the approach employed in the secure data aggregation phase, after the authentication of 

individual signatures, these consensus nodes aggregate the data, culminating in the acquisition of an aggregate replica, 

Eagg
r. This aggregate will be compared to the one proposed by the primary node. In this stage, the following steps are 

performed: 

 

o Step-1: Verify the signature of the received message.  

 

𝑒(𝑃, 𝑆𝑖𝑔𝑃0) = 𝑒 (𝑝𝑘𝐶𝑁𝑗
 , 𝐻(𝑣𝑖𝑒𝑤𝐼𝐷||𝑠𝑒𝑞𝑛𝑢𝑚||𝐸𝑎𝑔𝑔||𝐷𝐴𝑇𝐴))                                          (6) 

 

o Step-2: Compare the aggregate proposed by the primary node (Eagg) with the aggregate calculated locally (Eagg
r) where 

each consensus node uses a simple formula to check their consistency. The comparison formula is expressed as 

follows: 

 

𝐸𝑎𝑔𝑔  ! =  𝐸𝑎𝑔𝑔𝑟                                                                                     (7) 

 

If there are any differences between the aggregates of the consensus nodes and the primary node, it could mean that the 

main node is faulty or acting maliciously. Once the malicious aggregator is detected, appropriate actions can be taken 

to fix the issue. This involves excluding the Fog node from the aggregation process. 

 

o Step-3: If the verification passes, the consensus node will compute the signature of the received block. 

 

𝑆𝑖𝑔𝐶𝑁𝑗
=  𝑠𝑘𝐶𝑁𝑗

𝐻(𝑃𝑃𝑀)                                                                             (8) 

 

o Step-4: Send a PREPARE message (PM) <viewID, Seqnum, Eagg, SigCNj> to all other consensus nodes in the network. 

When a consensus node sends a PM, it also receives the prepare message broadcasted by other CNj active nodes and 

performs verification. It then enters the commit phase. 

 

• Commit: After receiving PM messages, each CNj verifies that the number of messages is greater than 2f + 1 then sends a 

Commit message to the primary node. These messages indicate that the other consensus nodes have validated the block 

proposal and are ready to proceed to the next step. If the primary node receives more than 2f + 1 valid confirmation 

messages, it adds the new block to the blockchain in a secure and non-immutable way. The steps are as follows: 

 

o Step-1: The Consensus node verifies the signature of the received messages. 

 

𝑒 (𝑃, 𝑆𝑖𝑔𝐶𝑁𝑗
) = 𝑒 (𝑝𝑘𝐶𝑁𝑗 

, 𝐻(𝑣𝑖𝑒𝑤𝐼𝐷||𝑠𝑒𝑞𝑛𝑢𝑚||𝐸𝑎𝑔𝑔||𝑆𝑖𝑔𝑃0))                                       (9) 

 

o Step-2: If the number of valid PMs received is greater than 2f + 1, then compute the signature of the received blocks. 

 

𝑆𝑖𝑔𝐶𝑁𝑗
=  𝑠𝑘𝐶𝑁𝑗

𝐻(𝑃𝑀)                                                                                (10) 

 

o Step-3: Send a COMMIT message CM <viewID, Seqnum, Eagg, SigCNj, Sig (Block||SET PM) > to the primary node in 

the network. 

o Step-4: The primary node verifies that the number of CM received is greater than 2f + 1. 

o Step-5: Add the new block to the blockchain. 

 



 

The primary node verifies the authenticity of the 'commit' messages it receives. To accomplish this, the primary node 

ensures that the information contained within the 'commit' messages corresponds with the data initially transmitted in the 

'prepare' messages. Once each consensus node effectively commits to the proposed block, and the primary node validates the 

'commit' messages originating from a minimum of 2f + 1 consensus nodes, the primary node adds the block proposal into 

the blockchain. Through this step, the stage of the consensus process reaches its conclusion. 

 

c. Fog node reputation update 

Consensus is considered to be achieved when the primary node receives more than 2f + 1 identical confirmation messages. 

Subsequently, the master node disseminates the confirmation result to all nodes, including candidate nodes, and updates the scores 

of all nodes simultaneously. Nodes that have a confirmation result consistent with the final consensus result have their scores 

increased by one, while nodes with inconsistent confirmation results have their scores reduced by five. The candidate and 

consensus set nodes undergo updates every 100 queries. The m nodes with the lowest scores are removed from the consensus set 

and appended to the candidate list. Conversely, the m nodes with the highest scores in the candidate set are added to the consensus 

node set and assigned new numbers. At this stage, the consensus process is considered complete. The symbols utilized in the 

algorithm are described in TABLE 4. 

TABLE 4 Notations of the PBFT algorithm 
 

Symbol Definition 

PPM Pre-prepare message 

PM Prepare message 

CM Commit message 

Seqnum Sequence number 

Eagg Encrypted aggregate 

viewID The current view number 

SigP0 Primary node signature  

SigCNj Consensus node signature 

DATA Individual IoT device data 

SET PM The set of Prepare message 

 

 

 
FIGURE 6 Weighted PBFT consensus process. 

It should be noted, firstly, that our approach deliberately avoids the use of traditional databases for data storage purposes. Each 

Fog node, a key element of the architecture, governs an exhaustive copy of the blockchain, and its role is limited exclusively to 

write operations when adding aggregates. As depicted in Figure 7, the detailed structure of the block, expressed by the components 

Header [Blocknumber, PreviousHash, Timestamp] Data [Eagg, Signagg, Signblock], constitutes the organizational basis of our data. 

Data aggregates, successfully undergoing the consensus process, are dutifully archived in the fog nodes, thus granting these nodes 

the status of highly secure storage centers for these aggregates. As for the storage configuration itself, it is essential to note that we 

are deviating from the use of conventional databases such as key-value databases or time series. Instead, we capitalize on the 

decentralized nature inherent in blockchain technology, exploiting this characteristic to distribute data fairly and securely. The 

approach we present is distinguished by its orientation towards decentralization, promoting the resilience and security intrinsic to 

the system. 



 

 
FIGURE 7 Blockchain structure. 

 

5.6. | Data decryption and reading 
 

The CC reads information from the blockchain periodically every 15 minutes. The CC is the only one who can access it in 

reading mode, recover the aggregate, decipher it, and use it for multifunctional calculation. By using the corresponding public 

keys, the CC verifies the validity of the signatures of each block, it then accesses the blocks and retrieves the encrypted 

aggregate. 

 

Algorithm 1: Our enhanced version of the PBFT algorithm 
INPUT: FNj, CNj, scores. 

OUTPUT: Updated scores, Blockj 

 
INITIALIZE FNj, CNj, scores 

 

nodes ← [FN1, FN2, ..., FNk2] 

scores ← {CN1: 100, CN2: 100, ..., CNj: 100} 

 
# Primary node 

SigP0 ← skCNjH(viewID || Seqnum || Eagg || DATA) 

PPM ← (viewID, Seqnum, Eagg, SigP0, DATA) 

Broadcast(PPM) 

 
# Consensus nodes 

FOR j IN active_CNj DO 

    e (P, SigP0) ← e (pkCNj, H (viewID || Seqnum || Eagg || DATA)) 

    IF Eagg != Eagg
r THEN 

        SigCNj ← skCNjH(PPM) 
        PM ← (viewID, Seqnum, Eagg, SigCNj) 

        Broadcast(PM) 

    END IF 

END FOR 
 

# Consensus nodes verify received PM messages and send a validation message if valid 

FOR j IN active_CNj DO 

    e (P, SigCNj) ← e (pkCNj, H (viewID || Seqnum || Eagg || SigP0)) 

    IF ∑(PREPARE_messages) > 2f + 1 THEN 
        SigCNj ← skCNjH(PM) 

        CM ← (viewID, Seqnum, Eagg, SigCNj, Sig (Block || SET PM)) 

        Broadcast(CM) 

    END IF 

END FOR 
 

# Primary node verifies the message and, if it receives valid COMMIT messages, updates the score 

IF ∑(CM) > 2f + 1 THEN 

    Add a new block to BC 

END IF 
 

FOR j IN active_CNj DO 

    IF primary_node receives a CM from CNj THEN 



 

        Scores[CNj] ← +1 

    ELSE 
        Scores[CNj] ← -5 

    END IF 

END FOR 

 

# Every 100 requests, update the list of consensus nodes and candidate nodes 
IF Seqnum == 100 THEN 

    lowest_scores ← scores sorted in ascending order and the first m are selected 

    highest_scores ← scores sorted in descending order and the first m are selected 

    consensus_nodes ← consensus_nodes - lowest_scores 

    candidate_nodes ← candidate_nodes + lowest_scores 
    consensus_nodes ← consensus_nodes + highest_scores 

END IF 

 

After checking the validity, CC decrypts the aggregated ciphertext Cj and retrieves the aggregated data by performing the 

following steps: 

 

o Step-1: The CC uses the following information to decrypt the aggregate contained in the blockchain: 

 

𝑀 = ∑ 𝑑𝑖𝑗𝑚𝑜𝑑 𝑛 𝑎𝑛𝑑 𝑅 =  ∏ 𝑟𝑖𝑗
𝑘1
𝑖=1

𝑘1
𝑖=1                                                                 (11) 

 

The CC uses his private key the tuple (λ, μ) to decrypt the message M. Note that the report gM. Rn mod n2 is a 

ciphertext of the Paillier cryptosystem. The decryption is done as follows. 

 

𝑀 =  (𝐶𝑗
𝜆 𝑚𝑜𝑑 𝑛2). 𝜇 𝑚𝑜𝑑 𝑛                                                                         (12) 

 

o Step-2: The CC retrieves both the aggregate contained in the same message, namely, (∑ 1
𝐾1
𝑖=1  || ∑ 𝑚𝑖𝑗

2 || ∑ 𝑚𝑖𝑗
𝑘1
𝑖=1

𝑘1
𝑖=1 ) 

using the decode function. The CC splits into 3 blocks of bits, the binary representation of Magg = 

(∑ 1
𝑘1
𝑖=1 || ∑ 𝑚𝑖𝑗

2 || ∑ 𝑚𝑖𝑗
𝑘1
𝑖=1

𝑘1
𝑖=1 ), The first block represents the aggregation of mij and has a length of (⌈log2(k1)⌉ + 𝑧). 

The second block represents the aggregation of mij² and has a length of (⌈log2(k1) ⌉ + 2𝑧). Finally, the last block 

represents the aggregation of 1. The three aggregates are then recovered as follows. 

 

∑ 𝑑𝑖𝑗 = ∑ 1
𝑘1
𝑖=1 || ∑ 𝑚𝑖𝑗

2 || ∑ 𝑚𝑖𝑗
𝑘1
𝑖=1

𝑘1
𝑖=1

𝑘1
𝑖=1                                                               (13) 

 

•  Multifunctional calculation  
 

In the proposal, the control center (CC) is tasked with computing several statistical functions for analytical purposes. These 

functions include the sum, average, variance, covariance, and ANOVA. This section elucidates the approach adopted by the CC 

to facilitate these calculations. 

The solution offers the advantage of providing the CC with immediate access to the information stored in the blockchain. Once 

the aggregates are decrypted, the CC has all the necessary data required for conducting various statistical calculations. In contrast 

to the approaches suggested in [17] and [19], our method eliminates the necessity for the CC to send requests to Fog nodes since 

it already has access to the required data. 
 

a. Sum Aggregation: The Sum function is the direct consequence of the data aggregation and is calculated systematically. If the 

CC needs the result of the summation for any analysis, it can simply retrieve the corresponding value. 

 

𝐴𝐺𝐺𝑠𝑢𝑚 =  ∑ 𝑚𝑖𝑗
𝑘1
𝑖=1                                                                          (14) 

 

b. Average Aggregation: The calculation of the average requires the value of the AGGSum and the number of IoT devices having 

transmitted their reports. These values are recovered following the decryption of the encrypted aggregates. 

 

𝐴𝐺𝐺𝑎𝑣𝑔 =  
1

∑ 1
𝑘1
𝑖=1

 . ∑ 𝑚𝑖𝑗
𝑘1
𝑖=1                                                                   (15) 

 

c. Variance Aggregation: If the CC needs to calculate the variance for statistical purposes, it can directly perform this calculation 

with the available information in Magg. The calculation consists of applying the variance formula. 

 

𝐴𝐺𝐺𝑣𝑎𝑟 =  
1

∑ 1
𝑘1
𝑖=1

 . ∑ 𝑚𝑖𝑗
2𝑘1

𝑖=1 −  
1

(∑ 1
𝑘1
𝑖=1

)
2  . (∑ 𝑚𝑖

𝑘1
𝑖=1 )

2
                                          (16) 

 

d. Coefficient-of-variation Aggregation: The coefficient of variation is used to compare the relative spread of two data sets of 



 

different sizes, or to assess the consistency of a time series by calculating the relative stability of the mean and standard 

deviation. If necessary, the CC can very easily calculate the value using the data at its disposal. 

 

𝐴𝐺𝐺𝑐𝑜𝑒𝑓𝑓−𝑣𝑎𝑟 =  

√
1

∑ 1
𝑘1
𝑖=1

 .∑ 𝑚𝑖𝑗
2𝑘1

𝑖=1
− 

1

(∑ 1
𝑘1
𝑖=1 )

2 .(∑ 𝑚𝑖
𝑘1
𝑖=1

)
2

1

∑ 1
𝑘1
𝑖=1

 .  ∑ 𝑚𝑖𝑗
𝑘1
𝑖=1

                                                (17) 

 

e. ANOVA Aggregation: The calculation of ANOVA involves comparing the means of three or more groups of independent 

data, making it a distinct statistical measure. To initiate the calculation of ANOVA, the CC is required to send a specific 

request indicating its intention. By comparing the means of multiple groups of observations collected from IoT devices, the 

CC can evaluate whether various usage strategies are significantly influenced by the k-strategies. Within a one-way ANOVA 

framework, the null hypothesis posits that the means of the measured data are not significantly impacted by different usage 

strategies. 

To perform ANOVA calculations, it is essential to compute the variance between groups. 

 

𝑆𝑆𝑏 =  ∑ ∑ 𝑚𝑖𝑗
2 − 

1

𝑘1
∑ (∑ 𝑚𝑖𝑗

𝑘1
𝑖=1 )

2
𝑠
𝑗=1

𝑘1
𝑖=1

𝑠
𝑗=1                                                        (18) 

 

Additionally, it is necessary to compute the variance within the group. 

 

𝑆𝑆𝑤 =  
1

𝑘1
∑ (∑ 𝑚𝑖𝑗

𝑘1
𝑖=1 )

2
−  

1

𝑘1.𝑠
(∑ ∑ 𝑚𝑖𝑗

𝑘1
𝑖=1

𝑠
𝑗=1 )

2
𝑠
𝑗=1                                                 (19) 

 

The (j + 1) represents the difference in usage strategy and the mij, mij² represents the capture data and its squared value stored 

in the blockchain.  

The CC calculates the F-value of the F-test as 𝐹 =  

𝑆𝑆𝑏
(𝑘1− 𝑠)⁄

𝑆𝑆𝑤
(𝑠−1)⁄

. For the degrees of freedom s − 1 denominator and k1 – s 

numerator, the CC rejects the null hypothesis, which means that at least one of the strategies of use has a significant influence 

on the users.; otherwise, the CC accepts the null hypothesis, which means that no usage strategy has a significant influence 

on users. 

• Multidimensional Data Aggregation  

 
We can expand the scope of our solution to accommodate multidimensional data. While the aggregation process and essential 

steps remain consistent, we must adapt the data structure accordingly. Each IoT device now measures and generates l types of data, 

denoted as (mi1, mi2, ..., mil).  
• Step-1: Each type of data is structured using the encoding function in (Figure 4) independently for each IoT device. 

 
• Step-2: Let z be the maximum number of bits that could represent a data type mil. IoTdij encodes its l types of data (mi1, mi2, 

..., mil) into (di1, di2, ..., dil) and constructs Dij as follows: 
𝑑𝑖𝑗𝑘 =  (𝑚𝑖𝑗𝑘)

2
||0𝜃 , 𝑘 = 1, … , 𝑙                                                                   (20) 

 

Where 𝜃 =  (⌈𝑙𝑜𝑔2(𝑘1)⌉ + 𝑊) ∗ (𝑘 − 1) 

 

𝐷𝑖𝑗 =  𝑑𝑖𝑗1 + 𝑑𝑖𝑗2 + ⋯ + 𝑑𝑖𝑗𝑙                                                                       (21) 

• Step-3: CC uses the decoding function to retrieve each aggregated data ∑ 𝑑𝑖𝑗𝑘
𝑘1
𝑖=1 . CC divides the binary representation of 

∑ 𝐷𝑖𝑗
𝑘1
𝑖=1  into l blocks of bits, the length of each block is (⌈𝑙𝑜𝑔2(𝑘1)⌉ + 𝑊). Thus, the first (⌈𝑙𝑜𝑔2(𝑘1)⌉ + 𝑊) least significant 

bits correspond to the aggregation result ∑ 𝑚𝑖𝑗1
𝑘1
𝑖=1  and so on. The CC then retrieves the aggregation result of each type of 

data as 

(∑ 𝐷𝑖𝑗
𝑘1
𝑖=1 ) = (∑ 1

𝑘1
𝑖=1 || ∑ 𝑚𝑖𝑗𝑙

2 || ∑ 𝑚𝑖𝑗𝑙
𝑘1
𝑖=1

𝑘1
𝑖=1 )|| … … (∑ 1

𝑘1
𝑖=1 || ∑ 𝑚𝑖𝑗2

2 || ∑ 𝑚𝑖𝑗2
𝑘1
𝑖=1

𝑘1
𝑖=1 )||(∑ 1

𝑘1
𝑖=1 || ∑ 𝑚𝑖𝑗1

2 || ∑ 𝑚𝑖𝑗1
𝑘1
𝑖=1

𝑘1
𝑖=1 )       (22) 

 

6  | SECURITY ANALYSIS  

 
In this section, we conduct a comprehensive analysis of the various security aspects associated with the BMDA proposal. The 

objective is to demonstrate the successful attainment of the design goals concerning security, which include preserving privacy, 

ensuring integrity and authentication, and maintaining confidentiality. 



 

a. Privacy-preserved individual IoT data 

In the BMDA proposal, we prioritize the preservation of individual IoT device data privacy, which is achieved through the 

utilization of Paillier homomorphic encryption. By employing this encryption technique, the data remains secure against various 

forms of ciphertext analysis, as the Paillier cryptosystem offers semantic security. It is important to note that no entity within the 

network, except for the IoT devices themselves, can access the individual data. Consequently, the captured data is encrypted before 

transmission to the Fog node for aggregation. The fog nodes aggregate them without the need for decryption and then, depending 

on how our aggregation protocol works, these aggregates are stored in the blockchain. For reading and decrypting the data, the 

CC will only have access to the aggregated data. Note that Paillier's cryptosystem is considered safe and reliable due to the 

mathematical difficulty of solving some of the problems underlying its operation, notably the difficulty of the prime number 

factorization problem, which is considered an NP-complete problem and difficult to solve efficiently for large primes but also the 

assumption that the quadratic residually problem is difficult to solve. Finally, due to the randomization of r in the calculation of 

the Paillier ciphertext, dictionary attacks are ineffective because the encryption of the same data will induce different ciphertexts 

with a very high probability, which makes the exhaustive search for individual data very difficult. 

b. Integrity and authenticity of data 

In the BMDA proposal, after completing the processes of data collection, encoding, and encryption, each IoT device signs the 

message {Cij, TS, IDij, Sigij} before transmitting it to the corresponding Fog node using the BLS signature algorithm [24]. The 

primary Fog node, upon receiving the reports, performs aggregation and then forwards a PPM message to the Fog nodes that 

belong to the consensus group. Sending the PPM message to the consensus nodes serves the purpose of enabling the calculation 

of an aggregate copy, which is essential for detecting malicious aggregates during the PBFT consensus process.  

The Fog nodes first check the IDij and the TS of each message (This first check guarantees the legitimacy and the freshness of 

the messages received). Subsequently, the integrity of the messages is checked using batch verification. All elements within the 

transmitted message are integral to the verification process, and any manipulation or alteration will result in verification failure. 

So, even though the attacker may try to send false client data from an illegal IoT device. The Fog node N will drop directly the 

data after verification fails. 

If the verification is successful, each Fog node approves the received data and subsequently signs the message {C i, TS, IDi}. 

Afterward, the Fog node initiates the PBFT consensus process, which is aimed at storing the aggregates in the blockchain. Note 

that during this transition stage before final storage, a BLS signature is used to sign the individual blocks transmitted during the 

consensus process. The Sigij of IoT devices is generated using the private key skij, and the signature SigCNj using the corresponding 

private key, namely skCNj. The private keys remain secret and an attacker cannot produce a valid message under any circumstances. 

Due to the malleability problem of homomorphic encryption schemes, in the data aggregation phase, a compromised Fog node 

can easily modify an IoT report data by multiplying the ciphertext Cij by a value and trying to deceive the CC by a biased 

aggregation result. So, even though the attacker may try to run such an attack, it is clear that the attack does not succeed, because 

it will be detected in the Prepare phase of the consensus process. The other nodes that act as consensus nodes will determine all 

valid Cij by checking the corresponding BLS signature Sigij, thus, the attacker cannot broadcast a PPM message with a valid Sij 

for the modified Cij. Consequently, the bogus data won't be accepted in the PBFT consensus and can't be added to the blockchain. 

As a result, tampering with IoT data by more than f (CN=3f+1) Fog nodes is impossible. 

c. Malleability 

It's a well-established fact that all homomorphic encryption schemes are inherently malleable. This malleability grants 

attackers the ability to tamper with ciphertexts by injecting false data without detection. For example, in our Paillier-based 

encryption, an attacker can increase the ciphertext C resulting from the encryption of m as C’ = E(m) + a from C = E(m). In data 

aggregation schemes, when IoTij devices send encrypted data to the FNj, an attacker attempts to modify the ciphertext to fool the 

CC which leads to false aggregates. Thus, homomorphic encryption is not secure against alteration of the ciphertext if the integrity 

of the ciphertext is not guaranteed via security mechanisms. In the proposed scheme, we leverage the PBFT consensus mechanism 

to store the aggregate in the blockchain, guaranteeing its validity and integrity. Consequently, any alteration of the ciphertext can 

be detected during the verification process. This detection occurs at multiple levels: firstly, at the Fog nodes upon receipt of reports 

from IoT devices, facilitated by the Boneh-Lynn-Shacham (BLS) signature scheme, and secondly, during the consensus process 

among Fog nodes where the same verification is performed. This comprehensive approach ensures the integrity of the data and 

protects against potential attacks on the ciphertext. 

d. Confidentiality 

In BMDA, the CC must access the blockchain, retrieve the encrypted aggregate, and calculate equation (12) to obtain the 

aggregated user data. However, without specific information about the private key (λ, μ), no attacker can obtain user data. 

e. Malicious aggregator detection 

The PFBT consensus process in BMDA is based on verification during the aggregation phase. Each Fog node receiving reports 

from its IoT devices forwards them to other participating Fog nodes in the consensus process. These nodes first verify the 

signatures (batch verification); if verification is successful, they calculate the aggregate for comparison with the aggregate 

transmitted by the primary node (the aggregator for this round of aggregation). Consequently, any alteration will fail in the PBFT 

consensus process, and the malicious aggregator will be detected. 



 

f. PBFT consensus and Blockchain 

The security of the blockchain architecture is crucial. Once the blockchain is attacked, it will lead to the leakage of user 

information, IoT device location information, and other private information. The security provided by our solution is preventive. 

The improved version of the PBFT algorithm ensures that all aggregates added to the blockchain are valid and accepted by all Fog 

nodes in the network. The consensus mechanism used is byzantine fault tolerant meaning that it can continue to function properly 

even in the presence of a small number of malicious nodes. The security of the blockchain-based BMDA solution is based on the 

following points. 

o Node Authentication and Identity: Every node in the network is authenticated and has a unique identity, preventing 

spoofing attacks. 

o State Replication: Data is replicated to all Fog nodes on the network participating in the consensus process, ensuring 

data is always available even if a node fails. 

o Approval by consensus: Each aggregate must be approved by consensus before being added to the blockchain, which 

means that all nodes participating in the consensus process must agree on the acceptance of the aggregate. Aggregates 

are approved by a voting process, which makes it very difficult for a malicious node to manipulate the consensus 

process. 

o Byzantine Fault Tolerance: PBFT is designed to resist "Byzantine" type attacks, i.e., attacks in which nodes can give 

false or malicious information. The consensus proposal uses voting mechanisms to allow nodes to detect and resolve 

conflicts between proposed transactions. In the event of a conflict, the nodes use majority rules to determine which 

block to accept and a scoring model to involve only the most trusted nodes in the consensus process. 

o Availability: PBFT is designed to be highly available, as each node can serve as a leader for a given consensus round. 

Additionally, the consensus process is robust and can continue to function even in the presence of faulty or malicious 

nodes. 

g. Multifunctionality 

The objective of enabling multifunctional computation on initial data from IoT devices is achieved. Indeed, everything is 

implemented through the encoding function to structure the data concisely before encryption. The aggregation process is 

performed and the aggregate is stored in the blockchain in the form  (∑ 1
𝐾1
𝑖=1  || ∑ 𝑚𝑖𝑗

2 || ∑ 𝑚𝑖𝑗
𝑘1
𝑖=1

𝑘1
𝑖=1 ), which provides the CC with 

all the necessary data to perform any statistical function supported by our solution. 

 

7 | PERFORMANCE ANALYSIS 

 
In this section, we analyze the performance of the BMDA proposal in terms of computation cost, communication overhead, and 

complexity. 

 

7.1. | Computation overhead analysis 

 
For the performance evaluation in terms of computational cost, we use the MIRACL library [30] to calculate the execution 

time of the cryptographic operations used in the BMDA and the previous solutions. We use for this analysis a computer with an 

Intel Core i5-8365U 1.60GHz × 8 processor and 8 GB of RAM. We consider for Paillier encryption a 1024-bit n and for pairing 

a base field size of 160 bits. 

To enable a comprehensive analysis of our contribution, we compare our solution with previous schemes. By excluding the 

blockchain from the comparison when evaluating solutions that address multifunctional aggregation, and by considering the 

blockchain when examining solutions focused specifically on blockchain, we ensure a representative assessment of our approach. 

To show the effectiveness of the proposed scheme, we compare its performance with Muda [17], SEMDA [21], and the TRAD 

schemes. TABLE 5 represents the cost of cryptographic operations namely, Exponentiation in ℤn2 Pairing, Multiplication in G1, 

Hash function, and Modular Addition. The computational cost of reverse mapping using Pollard's Lambda (Cpl) is shown in 

TABLE 6. The comparison in terms of computation cost is made at three levels, namely IoT devices, Fog nodes, and the Control 

Center. 

 

 

TABLE 5 Cost of cryptographic operations  
 

Symbol Operation Time (ms) 

Ce Exponentiation in Zn2 5.43 

Cp Pairing 1.44 

Cm Multiplication in G1 0.23 

Ch Hash function 0.07 

Ca Modular Addition 0.01 

 



 

TABLE 6 Cost of reverse mapping using the Pollard method  
 

Message size Time  

8 bits 28.6341 (milliseconds) 

13 bits 34.3637(milliseconds) 

32 bits 1087(milliseconds) 

56 bits 39.56 (minutes) 

 
 

We divide the comparative study in this section into three parts: multifunctional data aggregation, ANOVA aggregation, and 

blockchain-based data aggregation. 

 

a. Multifunctional data aggregation: 

 

In our solution, the data required for calculating all statistical functions are transmitted from the outset in the same and unique 

Cij. In Muda [17], the CC sends a specific request containing the aggregation function it wishes to compute. In SEMDA [21], the 

differentiation between the aggregation calculations of the different statistical functions is done at the level of the TD ij (Terminal 

Devices). Finally, in TRAD, we assume the same algorithms for encryption and signing as BMDA, the difference is that each IoT 

device generates two different reports, the first containing mij and the second containing mij². 

In BMDA, we employ the Paillier cryptosystem that requires two exponentiations in ℤn2, therefore, 2Ce are needed to calculate 

the ciphertext Cij, and a multiplication in G1, namely, Cm is required for the calculation of the signature Sigij. In Muda, the SMij 

requires three-group-based exponentiation and a multiplication group operation to calculate the cipher (note that in Muda, data 

integrity is not considered), thus, the cost is 3Ce + Cm. In SEMDA, the computational cost depends greatly on the aggregation 

function calculated, it is mainly a hash operation and modular addition. For the calculation costs the SUM = (k+1). Ch + k. Ca, the 

AVG = (k+2). Ch + (k+1). Ca, and finally VAR = Co-VAR (k+3). Ch + (k+2). Ca. The TRAD solution employs the same algorithms 

to encrypt and sign the messages to be transmitted as our proposal, thus, the TRAD solution would require twice the calculation 

time required for our solution 2(2Ce+Cm). The results are depicted in Figure 8, demonstrating the substantial reduction in 

computational overhead achieved by our BMDA solution when compared to Muda [17], SEMDA [21], and TRAD. Muda [17] 

relies on the use of homomorphic encryption of BGN, while SEMDA [21] employs modular addition, which, although cost-

effective, necessitates the exchange of keys among all entities involved. In contrast to other solutions that necessitate multiple 

rounds of aggregation, our approach utilizes an encoding function to facilitate multifunctional calculations within a single round 

of aggregation. 

In our solution, each FNj verifies the integrity and the authenticity of the data received and then performs a secure aggregation 

of the data, which is done as follows (∑1||∑mij²||∑mij). In Muda, SEMDA, and TRAD a different aggregation is carried out for 

each statistical function according to the requests of the CC, which induces additional calculation costs. 

In our proposed scheme, batch verification requires (k1+1) Cp to verify the received data. The aggregation of this data is 

inexpensive and just requires multiplication that can be neglected. In Muda, we have different computational costs which depend 

on the aggregation function computed. For the mean, (k1-1)*Cm group multiplication is necessary and for the variance, this requires 

2(k1-1)Cm+2(k1+1)Cp. In SEMDA, there are different calculation costs for each of the functions, the SUM = 2Ch + (k1-1) Ca, the 

AVG = 4Ch + 2(k1-1) Ca, and finally VAR = Co-VAR = 6Ch + 3(k1-1)Ca. Finally, in TRAD, the cost would be 2(k1+1) Cp + 4Cm. 

The results are visually represented in Figure 9, showing that our solution lies between two alternatives. On one hand, BMDA 

surpasses both Muda [17] and TRAD in performance. This can be attributed to our approach, which systematically aggregates the 

data as a whole, whereas the other solutions calculate each statistical function independently. On the other hand, BMDA incurs a 

higher computational cost compared to SEMDA [21]. This can be explained by the utilization of hashing and modular addition 

operations in SEMDA, leading to a relatively lower computational overhead. 

In BMDA, the CC first checks the block validity, access to the data and then decrypts it. The decryption, carried out by the 

CC, will have access to the data (∑1||∑mij²||∑mij) and will be able to calculate the statistical functions if necessary. In Muda [17], 

the cost of calculation is dependent on the size of the plaintext. Indeed, decryption requires the use of the Pollard Lambda method, 

which is effective when the size of the plaintext is relatively small but becomes inefficient as the size increases. For SEMDA, the 

CC has a different calculation cost depending on the aggregation function received. Finally, in TRAD the CC receives for each 

function a different message requiring verification and separate decryption. 

For BMDA, the verification of the block validity requires 2Cp, and the decryption requires 1Ce. In Muda, the aggregation 

requires 3(Ce + Cpl). In SEMDA, the costs at the Cloud Server level are different, the SUM = 1Ch + (k2-1)Ca, the AVG = 2Ch + 

2(k2-1)Ca + Cm, the VAR = 3Ch + (3k2-2)Ca + 2Cm + Ce and finally the co-VAR = 3Ch + (3k2-2)Ca + 2Cm + 2Ce. 

The results are depicted in Figure 10, it is shown that our proposal is efficient in terms of computational cost in comparison to 

the other solutions at the decryption level. The Muda scheme is ineffective if the size of the message to be decrypted is relatively 

large. The SEMDA is also characterized by inefficiency because the CC receives four separate reports (one for each statistical 

function) and subsequently performs decryption four times. This process significantly increases the computational cost involved. 

 

 



 

   
 

FIGURE 8 Computation overhead at 

IoT device. 

 

FIGURE 9 Computation overhead at 

Fog nodes (k1=100). 

 

FIGURE 10 Computation overhead at 

Control Center. 

b. ANOVA aggregation: 
 

The case of ANOVA is a special context in the sense that this function is calculated to check if a factor has a significant 

influence on the strategy of use. To allow the calculation of this statistical function, the control center notifies the network entities 

to follow a different usage strategy for a predefined period, 8 hours for example. The data mij in this case represents the use under 

a single strategy for 8 hours. If we consider 3 different strategies, the calculation of ANOVA can be performed every 24 hours, 

which is the time required to gather all the essential data for the calculation. 

Next, we compare our proposed ANOVA calculation approach with the Muda solution [17]. In our solution, the calculation 

of ANOVA is conditioned by the notification of the control center, which sends a request indicating its requirement to calculate 

the ANOVA. This encourages all the entities in the network to adapt accordingly. Indeed, at the IoT device level, the ANOVA 

aggregation is the same as that of the sum aggregation. The aggregation at the Fog node level, after receiving all the data required 

for ANOVA calculation, is contingent upon the adoption of k distinct strategies. This involves performing k rounds of aggregations 

(one for each strategy) followed by the ANOVA calculation.  The total cost of the ANOVA calculation is s((2Ce+Cm) + ((k1+1) 

Cp + Cm) + (2Cp + Ce)). In Muda [17], the control center sends a request containing the aggregation functions necessary for the 

ANOVA calculation to the Gateway. The total computational cost is k1sCp + (3k1 s − s − 2) Cm. The results are illustrated in Figure 

11, depicting that the BMDA solution exhibits a lower computational cost for ANOVA computation compared to Muda [17]. This 

disparity can be explained by the complexity of calculations involved in Muda. It is noteworthy that our encoding function enables 

the acquisition of the required data for ANOVA calculations, namely (∑1||∑mij²||∑mij), within a single round of aggregation. In 

contrast, Muda performs separate calculations, leading to increased computational overhead. 

 

 

 
FIGURE 11 Computation Overhead of ANOVA with (s=3, k1=100). 

 



 

c. Blockchain-based data aggregation: 
 

In this part, we are interested in the blockchain and the PBFT consensus process. We show the effectiveness of our proposal 

in comparison with the traditional PBFT-based solutions [13] and [15]. The PBFT consensus process uses the BLS signature for 

block signing, and for verification instead of checking the signatures one by one, it uses batch verification. Moreover, since we 

use a score-based model, the number of nodes participating in the consensus is reduced by half. To determine the computational 

cost, we are only interested in the operation of the signature and verification of Fog nodes. 

In the Request step, the primary node proposes a new block to add to the blockchain. For this, the node must perform a 

signature operation to sign the proposed block. Since each block is signed only once, the number of signing operations in this step 

is equal to the number of blocks offered. 

In the pre-prepare stage, each consensus node that has received IoT device reports from the primary node sees its computational 

cost slightly increase by (k1+1)Cp due to signature verification. Aggregating this data is inexpensive and just requires multiplication 

which can be neglected for each round of aggregation. Also, each node receives the proposed block and must perform signature 

verification to validate the block. As each block is signed only once, the number of verification operations in this step is equal to 

the number of blocks offered. Instead of verifying each signature individually, signatures from multiple blocks can be bundled 

into a single packet and verified simultaneously. 

In the prepare stage, each node sends a prepare message to all other nodes to indicate that the proposed block has been 

validated. For this, the node must perform a signature operation to sign the message. As each node sends a single prepare message, 

the number of signature operations in this step is equal to the number of active nodes in the network. For our solution, the cost is 

(k2/2) Cm. 

Similarly, in the commit step, the messages from prepare can be bundled into a single packet and checked simultaneously. 

This can reduce the number of signature verification operations needed at the commit stage. 

Following the same operating model as the traditional PBFT, our proposal has one major difference, which lies in the number 

of Fog nodes participating in the consensus process. Indeed, we suggest that the number of nodes actively participating in the 

consensus represents half of the Fog nodes in the network. The other half is the candidate nodes. The results are shown in Figure 

12, revealing that the enhanced version of the PBFT consensus process imposes a lower computational burden compared to the 

traditional PBFT-based solutions even in large-scale networks. This disparity can be explained by the fact that in the proposed 

weighted PBFT approach, the number of nodes participating in the consensus is relatively small. 

 

 

 
FIGURE 12 Large-scale computation overhead of PBFT process (k2=500). 

 

7.2. | Communication overhead analysis 
 

In BMDA, mij and mij² are encoded, encrypted, and then transmitted periodically by each IoTdij to the corresponding Fog node. 

We consider in the communication overhead analysis three types of communication, namely IoTd-to-FN communications, FN-to-

CC communications, and FN-to-BC communications. We use the Cooja simulator [31] under Contiki2.7 (see TABLE 7) to compute 

the overhead at different levels. Note that we compute the overhead needed to calculate the statistical functions based on m ij and 

mij². 

 

 



 

TABLE 7 Cooja Simulation parameters 

PARAMETERS VALUE 

Simulator Cooja 

Number of nodes IoTd: 20, 40, 60, 80, 100 

FN: 2, 4, 6,…, 20, 22 

Simulation duration 1 Aggregation round 

Root node identity 1 

Mote startup delay (ms) 1 

Random seed 123.456 

Topology  Random 

Mote type Skymote 

Radio environment UDGM 

 

TABLE 8 Communication overhead comparison 

 

Scheme IoTd-to-FN FN-to-BC 

BMDA 2272 bits 2112 bits 

Muda [17] 4160 bits 8320 bits 

SEMDA [21] 5120 bits 5120 bits 

TRAD 4544 bits 9088 bits 

 

 

a. Multifunctional data aggregation: 
 

In this section, we compute the overhead needed to calculate the statistical functions based on m ij and mij². In BMDA, the 

report for mij and mij² contains {Cij, Sigij, IDij, TS} is transmitted from IoTdij to FNj where Cij ∈ ℤn2 and Sigij ∈ G1. We assume 

that the size of IDij and TS is equal to 8 bytes. So, the IoTd-to-FN communication cost is 2048+160+64 = 2272 bits. In Muda [17], 

the transmitted report contains only {Cij, IDij, TS}. So, the communication cost is 4096+64 =4160 bits. In SEMDA [21], the 

transmitted message for mij contains only {Cij, σij}. So, the communication cost is 1024+256 = 1280 bits. Note that for SEMDA 

an additional 1024 bits should be transmitted for key sharing since they use a symmetric encryption scheme based on modular 

addition. Furthermore, for mij², another cipher is calculated and then transmitted to the adjacent Fog nodes. For TRAD, we assume 

the same algorithms for encryption and signing as BMDA, the difference is that each IoT device sends two different reports, the 

first containing mij and the second containing mij², so the calculation load is 2(2272) = 4544 bits. The comparison of 

communication costs with previous schemes and TRAD is shown in TABLE 8. The comparison in terms of communication cost 

IoTd-to-FN is depicted in Figure 13. The results show that BMDA incurs lower communication overhead than the other schemes. 

The reason is that BMDA requires only one round of aggregation to provide the CC with mij and mij², while two rounds are required 

in SEMDA [21] and TRAD. Additionally, for the same security level, the size of the encrypted message for mij and mij² is smaller 

with Paillier encryption compared to the BGN encryption employed in Muda [17]. As a result, the cost of BMDA is lower. 

In what follows, we consider FN-to-CC communications. To make a precise comparison between BMDA and other 

multifunctional data aggregation schemes, namely MUDA [17] and SEMDA [21], we omit the use of blockchain and its consensus 

layer in BMDA. We assume that after aggregation, the Fog node directly submits the result to CC. So, each Fog node transmits, 

to the CC, the message containing {Cj, IDj, TS} where Cj ∈ ℤn2. We assume that the size of IDj and TS is equal to 8 bytes. So, the 

FN-to-CC communication cost is 2048+64 = 2112 bits. In Muda [17], the Fog node sends two aggregation reports. The first 

contains {C1j, IDj, TS} for mean aggregation, and the second contains {C2j, IDj, TS} for variance aggregation. So the 

communication cost is 2(4096+64) = 8320 bits. In SEMDA [21], the transmitted message contains only {C j, σj}. The 

communication cost is therefore 1024+256 = 1280 bits. For each statistical function, a different report is transmitted to the CC. 

So, the total communication cost is 4(1280+256) = 5120 bits. Finally, in TRAD the Fog node transmits a different report for each 

aggregation function inducing a significant computational load. The transmitted messages have a total cost of 4(2272) = 9088 bits. 

Figure 14 shows the efficiency of BMDA (without the consensus layer) in terms of FN-to-CC communications cost compared to 

MUDA, SEMDA, and TRAD. 

 



 

  

 
FIGURE 13 IoTd-to-Fog communication overhead. 

 
FIGURE 14 Fog-to-CC communication overhead. 

 

b. PBFT consensus process: 
 

In BMDA, we consider a blockchain with its consensus algorithm. So, in this section, we focus on the layer responsible for 

processing the consensus algorithm. Recall that the proposed consensus algorithm aims to verify the correctness of the aggregation 

result and the secure data storage on the blockchain. In Figure 15, we compare the cost of this verification with the one generated 

by traditional PBFT-based solutions [13] and [15]. In our solution, the number of fog nodes participating in the consensus process 

is less than half compared to traditional PBFT solutions. As a result, the number of transmitted messages needed to calculate the 

consensus is much lower in our solution. Figure 15 illustrates the increase in the number of messages as the number of fog nodes 

in the topology increases. We observe a moderate increase in our solution and a rapid increase in solutions based on traditional 

PBFT. Even in a large-scale network with a significant number of Fog nodes. 

 

 
FIGURE 15 Large-scale PBFT-process communication overhead. 

Note that in [13] and [15], a malicious aggregator (e.g. who modifies an IoT report data) cannot be detected. In BMDA, an 

additional communication cost occurs in the pre-prepare phase of the consensus process. It is of the order of k1((N/2) -1)) 

messages. This number of messages represents the transfer of the reports (Data) by the primary Fog node to the consensus nodes 

for the calculation of a copy of the aggregate, which allows the detection of malicious aggregators. 

 

7.3. | Complexity analysis  
This section provides an in-depth analysis of the complexities involved in various aspects of the proposed solution. 

 

a. Data Encoding Complexity 



 

The complexity of data encoding, represented by the Encoding Function, is denoted as O (z + log2(k1)). From an efficiency 

perspective, this complexity indicates linear efficiency concerning the input data size (z) and a logarithmic component (log2(k1)) 

relative to the number of IoT devices (k1). This implies reasonable efficiency considering the operations involved in adding zeros 

and concatenating the parts. While scalability hasn’t been explicitly mentioned, the logarithmic component (log2(k1)) indicates 

that the encoding process can scale reasonably well with an increase in the number of IoT devices (See TABLE 9). For instance, 

with 250 IoT devices and z= 16bits, l = 15 data types can be supported if multidimensional aggregation is considered.    

 

TABLE 9 Scalability analysis 

 

 

|n| 

 

z (bits) 

 

k1 

EF output (bits) 

W 

 

l 

1024 16 250 65 15 

  500 67 15 

  750 69 14 

  1000 69 14 

 32 250 113 9 

  500 115 8 

  750 117 8 

  1000 117 8 

 

b. Encryption Complexity 
By employing Paillier encryption with addition-only operations, encryption complexity is O(n2), where n represents the length 

of the keys in bits. For decryption, complexity is O(n3), while homomorphic addition complexity is O(n). Despite the linear increase 

in complexity with the number of homomorphic additions, it remains dominated by the key length (n), underscoring the strength 

of Paillier encryption for such operations. 

c. Signature Complexity 
In the key generation phase, the complexity typically scales with O(logq), where q signifies the order of the multiplicative 

group on the elliptic curve. Generating a BLS signature involves a scalar multiplication operation between the private key and a 

hashed message, generally denoted as O(logq). Verification complexity depends on the elliptic curve and may be O(log2q). 

d. Blockchain Operations Complexity 
Communication between nodes and broadcasting messages (PPM, PM, CM) both have a complexity of O(n), where n is the 

total number of nodes. Message verification involves signature generation and verification, typically with a complexity of O (1) 

for each node upon message receipt. Message validation by consensus nodes, with the sum of PREPARE_messages, has a 

complexity of O(n) within the FOR loop. Score update complexity is linear (O(n)) as each consensus node is verified, adjusting 

scores accordingly. Adding a new block to the Blockchain generally has a complexity of O (1), dependent on the Blockchain's data 

structure. Updating consensus nodes and candidate nodes exhibits complexity O (m*log(m)), where m represents the number of 

nodes to add or remove, necessitating sorting scores. 

In summary, our proposed BMDA solution significantly reduces computational overhead compared to Muda, SEMDA, and 

TRAD, as demonstrated in Figures 8-12. This efficiency is achieved through the use of the encoding function, which enables 

multifunctional calculations within a single round of aggregation. Additionally, the enhanced PBFT consensus process further 

reduces the computational burden, particularly in large-scale networks, by decreasing the number of nodes actively participating 

in consensus. 

Moreover, BMDA exhibits a significantly lower communication overhead compared to Muda, SEMDA, and TRAD, in both 

IoTd-to-FN and FN-to-CC communications, as illustrated in Figures 13 and 14. This efficiency is attributed to BMDA's single-

round aggregation for mij and mij² and the smaller message size due to Paillier encryption. 

Furthermore, BMDA demonstrates efficient and scalable performance across various computational aspects. The data encoding 

complexity of (𝑧+log2(𝑘1) ) ensures reasonable efficiency and scalability as the number of IoT devices increases. The encryption 

complexity of (𝑛2) for Paillier encryption, combined with the complexities of signature and blockchain operations, underscores the 

practicality of our approach for large-scale applications. This is illustrated in TABLE 9, which shows how these efficiencies 

contribute to the robustness of BMDA in handling multifunctional and multidimensional aggregation and secure data transmission. 

 

8 | CONCLUSION  
 

In this research paper, we have presented a novel secure multifunctional data aggregation scheme called BMDA for Fog-IoT 

environments. Unlike existing schemes, BMDA does not require multiple requests of aggregation from the control center to 

compute statistical functions on the aggregated data, such as mean, variance, and covariance. Through the utilization of an 

encoding function in conjunction with the Paillier cryptosystem, all the necessary data for computation is encapsulated within a 

single ciphertext, enabling a single round of aggregation to be sufficient. Furthermore, blockchain technology is employed for 

secure data storage, and a consensus algorithm is used to verify the correctness of the aggregation result. Through theoretical 

analysis and simulation experiments, we have demonstrated that BMDA is efficient compared to several related works in terms of 



 

computation and communication, while still maintaining its security properties. In future research, we will focus on enhancing 

secure data aggregation techniques to withstand dishonest security models, employing advanced cryptographic methods, anomaly 

detection algorithms, and integrating machine learning for proactive threat mitigation, aiming to strengthen the resilience and 

trustworthiness of IoT systems. 
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