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Abstract

The growing demand for public Electric Vehicle (EV) Charging Stations (CSs)
is vital for promoting wider EV adoption but frequently results in congestion
due to limited availability and high usage, leading to increased wait times for
drivers. In response, this study proposes a predictive occupancy model utilizing
a privacy-preserving Federated Learning (FL) approach, which enables multiple
Charging Station Operators (CSOs) to collaborate without sharing sensitive user
data. Unlike traditional centralized models, our FL framework allows CSOs to
contribute to a central server that aggregates their local models, maintaining
privacy and ensuring data security. A key challenge in this setup is managing
non-Independently and non-Identically Distributed (non-IID) and heterogeneous
data, common in real-world scenarios with diverse user behaviors and charging
patterns. To address this, we evaluate various aggregation algorithms, includ-
ing FedAvg, FedProx, SCAFFOLD, and FedPer, to determine their effectiveness
under different conditions. Using 10-minute interval data from the Dundee City
CS dataset, we predict station occupancy one hour ahead. The results show that
FedPer and SCAFFOLD perform exceptionally well when handling unbalanced
data, while FedAvg proves to be more effective in situations with skewed feature
distributions. This FL approach not only improves the accuracy of EV charging
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station occupancy predictions but also lays the groundwork for securely scaling
EV infrastructure, ensuring that privacy concerns do not hinder the development
of intelligent, data-driven services.

Keywords: Charging Station ; Occupancy Prediction ; Electrical Vehicle ; Federated
Learning ; Data Privacy ; Non-IID Data

1 Introduction

The shift to Electric Vehicles (EVs) is rapidly progressing to achieve emission-free
transportation and align with Paris Climate Agreement goals. During 2018-2019,
global electric car sales surged by 6%, reaching 2.1 million [1]. As of April 1, 2020,
there were 312,767 electric and plug-in hybrid vehicles in circulation in France.

Over the past decade, EVs have gained considerable attention in the literature, cov-
ering areas such as predicting energy demand [2, 3], optimizing Charging Station (CS)
pricing strategies [2, 4], improving EV charging navigation [5, 6], developing efficient
on-demand EV routing [7], identifying suitable locations for deploying of CSs [8, 9],
and optimizing maintenance costs for EV fleets [10]. However, the growing number
of EVs has increased the need for CSs to meet this high demand, resulting in queues
at CSs and causing traffic congestion [11]. Hence, predicting Electric Vehicle Charg-
ing Station (EVCS) occupancy is vital for optimizing and managing efficiency and
profitability. This predictive capability enhances resource management by allocating
CSs more effectively, reducing waiting times for EV drivers, and maximizing CS uti-
lization. Additionally, it empowers grid operators to manage electricity supply and
demand efficiently, potentially alleviating strain on the power grid during peak charg-
ing times. Moreover, it facilitates scheduling maintenance during low-demand periods,
minimizing disruptions and bolstering infrastructure reliability.

Several recent predictive models have been proposed to enhance EVCS occupancy
prediction, such as the Spatial-Temporal Graph Convolutional Network (STGCN)
in [12], the mixed LSTM neural network in [13], and the Deep Fusion of Dynamic and
Static Information model (DFDS) in [14]. While centralized models offer the advan-
tage of aggregating data without concerns about privacy or ownership, enabling a
more efficient and straightforward training process, they also present significant lim-
itations. The reliance on centralized architectures raises critical privacy and security
concerns due to the sensitive nature of data collected from users and smart grid
devices. Furthermore, these models often depend solely on limited local datasets from
individual Charging Station Operators (CSOs), which constrains their effectiveness.
This dependence decreases their accuracy and robustness and limits the generalizabil-
ity of the predictive insights, as they fail to incorporate diverse data patterns from a
broader operational context. This paper presents an effective collaborative approach
using Federated Learning (FL) to tackle the challenges of EVCS occupancy prediction.
FL allows multiple CSOs to collaboratively build a predictive model while preserving

1https://www.ecologie.gouv.fr/developper-lautomobile-propre-et-voitures-electriques
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data privacy, unlike centralized models that require direct data sharing. This ensures
that sensitive EV user and CS data remain protected, while FL leverages a more
diverse and comprehensive dataset, significantly enhancing model robustness and gen-
eralizability across different operational contexts. FL works by training ML models
on decentralized data sources without the need to transfer data to a central server. In
this framework, multiple CSOs act as FL clients, training local models on their data.
The central server aggregates these locally trained models using specified aggregation
methods to build a globally optimized model. This approach protects data privacy
and ensures improved prediction accuracy by utilizing the combined knowledge of all
CSOs, making FL an effective option for real-world, privacy-sensitive applications.

The present work builds upon the earlier framework by Douaidi et al. [15], which
introduced a Federated Deep Learning (FDL) approach for predicting EVCS occu-
pancy using Independent and Identically Distributed (IID) data from different CSOs.
However, real-world applications present a more challenging scenario, as data collected
from various CSOs often exhibit non-IID characteristics due to factors like geograph-
ical location, user behavior, and infrastructure differences. This data heterogeneity
can significantly impact model performance, making it essential to explore solutions
beyond the original IID-based framework. The key contributions of this paper are
summarized as follows:

1. We develop an advanced predictive model for EVCS availability, which yields sub-
stantial economic benefits by helping CSOs optimize resource allocation, reduce
congestion, and enhance the efficiency of EV charging infrastructure.

2. We propose a novel FDL-based framework for EVCS occupancy prediction, enabling
multiple CSOs to collaborate without sharing sensitive data. This is a signifi-
cant step forward in addressing privacy concerns while improving the accuracy of
occupancy predictions.

3. We introduce a variety of local Deep Learning (DL) models, including Long
Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Convolutional Neu-
ral Networks (CNNLSTM), and Transformer. These architectures are specifically
chosen for their ability to capture complex temporal relationships and dynamic
patterns in EVCS occupancy data. Furthermore, the inherent challenges posed
by non-IID data in real-world scenarios can significantly impact the effectiveness
of traditional FL aggregation methods, such as Federated Averaging (FedAvg).
To address these challenges, our study conducts a comprehensive exploration
and comparison of four widely-used aggregation algorithms: Federated Averag-
ing (FedAvg)[16], SCAFFOLD [17], and Federated Personalization (FedPer) [18].
This comparative analysis addresses a significant gap in the literature, which often
neglects the evaluation of multiple aggregation strategies in heterogeneous data.
By examining these algorithms, we provide valuable insights into their relative
strengths and weaknesses, thereby enhancing the predictive capabilities of our FDL
framework for EVCS occupancy prediction.

4. The prediction performance is evaluated on a non-IID dataset from the Dundee
city EVCS. Multi-step predictions are conducted one hour ahead using 10-minute
interval data, offering detailed and forward-looking insights to improve planning
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grid management and reduce congestion at CSs. The results indicate that Fed-
Per and SCAFFOLD-based FL perform better with unbalanced datasets, while
FedAvg produces satisfactory outcomes for skewed feature distribution data. More-
over, feature importance identification demonstrates that incorporating lagged data
improves EVCS occupancy prediction. Additionally, the SHapley Additive exPla-
nation (SHAP) method demonstrates the contribution of individual features to the
predictions.

The paper’s organization is illustrated as follows: The first section reviews pre-
vious research on forecasting EVCS occupancy. Subsequently, the second section
elaborates on the proposed occupancy prediction framework. The third section com-
prehensively presents the dataset’s experimental details and discusses the obtained
results. Finally, we conclude by shedding light on the research’s contributions and
highlighting potential future directions.

2 Related work

Predicting EVCS availability has recently gained increased attention from engineers
and researchers, resulting in the development of various methods broadly classified
into two categories: statistical models and Machine Learning (ML) models. Within

statistical methods, Luo et al. [19] introduce a method for predicting the charging
load of plug-in electric vehicles (PEVs) in China, employing a monte carlo simulation
to determine the initial charging point based on probability distributions of starting
charging time. In [20], Gaussian mixture models are employed to gain insights into EV
user behavior and predict individual charging sessions’ duration and energy demand.
This analysis uses an open dataset of workplace EV charging with over 30,000 sessions.
In [21], Gruosso et al. focus on forecasting the impact of EVCSs, proposing a model
based on markov chains. This model considers vehicle distribution, average plug time,
and energy consumption to create an occupancy distribution for individual stations
and their consumption profiles. Dastpak et al. in [22] propose a Markov Decision Pro-
cess (MDP) solution and a heuristic to estimate waiting times at CSs. Their method
reduces waiting times by 23.7% to 95.4% and total trip duration by 1.4% to 18.5% com-
pared to a benchmark that observes the status of CSs without an occupancy indicator.
However, traditional statistical models, such as ARIMA, struggle with multi-step occu-
pancy predictions for CSs due to their limitations in capturing non-linear relationships
and reliance on strict data assumptions. In contrast, DL models, particularly LSTM
networks, excel at identifying complex non-linear dependencies and long-term tempo-
ral patterns, significantly enhancing forecasting accuracy [23, 24]. By leveraging their
ability to model intricate relationships in occupancy data, LSTMs consistently deliver
superior performance in multi-step predictions compared to traditional methods.

In recent years, ML models, especially DL ones, have become a promising solu-
tion for time-series prediction, resulting in significant electric mobility advancements.
For example, Straka et al. [25] introduced a data-driven approach to predict popular
charging pool locations using classification techniques, such as logistic regression with
L1 regularization, random forests, and gradient-boosted decision trees. Results show
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that strategically positioning CSs in high-traffic areas with convenient services attracts
more users. The study in [26] explored the importance of features and CS character-
istics that can influence occupancy using logistic regression models. The evaluation
used data from 52 CSs with over 24,000 charging events. Sao et al. [14] introduced
an approach by combining dynamic features such as time and day of the week with
static attributes like historical occupancy patterns at specific times. Specifically, Gated
Recurrent Unit (GRU)-based decoding is used to forecast the future occupancy trend
of individual charging points over various periods, ranging from 10 minutes to sev-
eral hours. The study in [27] focused on short-term forecasting of EVCS occupancy
using extensive data streaming analysis. The authors proposed an architecture that
leverages historical data and real-time data streams from CSs to forecast station avail-
ability for the next 15 minutes. They used a streaming logistic regression model that
outperforms models trained solely on historical data. In [13], Ma et al. introduced
Hybrid LSTM neural networks that merge historical charging occupancy sequence
data with occupancy rates, achieving high performance for both short-term (10 min-
utes) and long-term occupancy predictions (2 hours). In [28], Luo et al. proposed
an Attribute-Augmented Spatiotemporal Graph Informer (AST-GIN) that combines
Graph Convolutional Network (GCN) and Informer layers to capture both spatiotem-
poral dependencies and external factors (like points of interest and weather). Tested
in the Dundee City EV charging dataset, it outperformed three baseline models in
predicting CS availability when the prediction horizon is 90 minutes and 120 minutes.

Table 1 summarizes some of the recent relevant works in the literature, as discussed
in the related work section. From this table, we observe that previous studies on CS
occupancy prediction have predominantly used centralized training approaches which
raises privacy concerns. The data required for predicting occupancy includes sensitive
information collected from CSs. This information can reveal user behaviors and pat-
terns potentially leading to privacy breaches under regulations like GDPR. Sharing
such data not only risks violating user privacy but also exposes proprietary informa-
tion to competitors and could be misused for profiling charging habits. Additionally,
transferring large amounts of data from all stations of all CSOs to a central server may
be impractical due to bandwidth limitations and can be resource-intensive. To address
these limitations and challenges, FL is an alternative solution that offers a decentral-
ized approach to model training, where data remains localized and only model updates
are shared, thus mitigating privacy concerns and reducing the volume of data trans-
mitted over the network [29]. The use of FL represents a balanced approach that seeks
to address the competing priorities of data privacy and model accuracy.

FL has demonstrated successful applications in the electric mobility domain. These
applications include recommendation systems for EVCSs [30], energy demand pre-
diction [3, 31–33], mobile CS placements [34], and competitive EV charging market
analysis [35]. In our previous work [15], we introduced a FL framework for predicting
CS occupancy using Independently and Identically Distributed (IID) data. In that
study, we demonstrated that individual CSOs with insufficient data could not train
models that converge well or accurately predict station occupancy, thereby necessitat-
ing the use of FL to collaboratively leverage data from multiple CSOs. However, it is
important to acknowledge that the assumption of IID data may not hold in real-world
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Table 1: Comparison of relevant works on EVCS occupancy prediction.

Authors Dataset non-IID Prediction
Methods

Federated Privacy

Luo et
al. [19]

PEV dataset, China ✗ Monte Carlo
simulation

✗ ✗

Lee et
al. [20]

ACN-data EV charging ✗ Gaussian mixture
models

✗ ✗

Gruosso et
al. [21]

Data from Teinvan
project

✗ Markov chains
model

✗ ✗

Dastpak et
al. [22]

Open EV dataset1 ✗ Markov chains
model

✗ ✗

Straka et
al. [25]

EVnetNL dataset ✗ Logistic regression,
random forests,
gradient boosted
regression trees

✗ ✗

Motz et
al. [26]

ACN-data EV charging ✗ Logistic regression ✗ ✗

Sao et
al. [14]

EVCS dataset in
Germany

✗ Encoder-decoder
neural architecture

✗ ✗

Soldan et
al. [27]

Dataset from 1,724 EV
charges

✗ Logistic regression ✗ ✗

Ma et al. [13] EVCS Dundee city
dataset

✗ Hybrid LSTM
neural network

✗ ✗

Luo et
al. [28]

EVCS Dundee city
dataset

✗ Graph
Convolutional
Network

✗ ✗

Douaidi et
al. [15]

EVCS Dundee city
dataset

✗ LSTM-based
neural network

✓ ✓

This study Generated EVCS
dataset

✓ LSTM, BiLSTM,
CNNLSTM,
Transformer

✓ ✓

scenarios. In practice, CSOs’ data is often non-IID due to factors such as varying user
behaviors, geographic locations, and temporal usage patterns. The presence of non-
IID data poses significant challenges and can limit the effectiveness of traditional FL
aggregation methods like FedAvg.

3 The proposed EVCS occupancy prediction
framework

As discussed in the previous section, centralized methods pose significant privacy
and security risks in the context of EVCS data. The sensitive nature of user charg-
ing information, combined with regulatory requirements and commercial competition,
necessitates a privacy-preserving approach. To address this shortcoming, our contri-
bution focuses on flexible FL-based prediction models to enhance EVCS occupancy
prediction.

In this section, we provide a comprehensive overview of our contribution to advanc-
ing EVCS occupancy prediction. Our framework is built around two key components.
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First, we introduce an innovative system architecture that facilitates distributed col-
laboration among federated CSOs, with coordination managed by a central server.
This architecture ensures secure and efficient collaboration while maintaining data
privacy. Second, our framework integrates a variety of FDL-based prediction models,
individually trained by each CSO, which are then aggregated using FL methods at
the server level. This collaborative approach enhances EVCS availability prediction
by leveraging the collective insights and diverse datasets of multiple CSOs, improv-
ing model accuracy and overall system performance. By combining decentralized data
with FL techniques, we maximize the predictive power while safeguarding sensitive
information, providing a robust and scalable solution for EVCS management.

3.1 System architecture for EVCS occupancy prediction

The EVCS system is composed of several key components that ensure the efficient
management of EV charging processes [36]. Through an in-depth literature review, we
have identified the core elements that make up the EVCS system. These components
include EV Users, CSOs, and e-Mobility Service Providers (eMSPs). Together, these
stakeholders play essential roles in the successful operation and management of EV
charging infrastructure [15] (see Figure 1):

• EV User: Individuals who drive electric vehicles and rely on charging infrastruc-
ture,

• CSO: Entities responsible for the installation, management, and maintenance of
charging points. CSOs retain ownership of all data related to the usage of their CSs,

• eMSP: Providers of EV charging services, facilitating access to CSs and handling
payment processes through agreements with one or more CSOs.

In today’s competitive environment, CSOs are often hesitant to share data with
competitors due to concerns around privacy and security. Centralized approaches that
depend on extensive data sharing face significant challenges, particularly in maintain-
ing robust data privacy and managing data transmission overhead efficiently. This
study introduces a decentralized approach using FL) to address the privacy and
security challenges inherent in EV charging systems. FL allows individual CSOs to
collaborate while keeping their data local, eliminating the need for sharing sensitive
information about CS usage [37]. By keeping data local, FL also minimizes the need
for large-scale data transfers over the network, reducing data transmission overhead.
Through collaboration within the federated framework, CSOs can benefit from the
diverse datasets of other operators, improving the accuracy and reliability of occu-
pancy predictions without direct data sharing—an essential feature in a competitive
landscape. A central server, potentially operated by a neutral entity, orchestrates the
model training process across all CSOs (Figure 1). This server aggregates their local
models within a collaborative system using a defined aggregation method.

In the following, we provide a comprehensive overview of the main steps in the FL
training process:

• Step 1: The central server initiates the process by initializing a DL model, denoted
as M0, and transmits this initial model to all participating CSOs,
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Fig. 1: A schematic representation of the proposed FL architecture to predict EVCS
occupancy.

• Step 2: Each CSO Ci proceeds to train the model they received, utilizing their
locally-stored data Di. Subsequently, they transmit the locally updated model
weights, denoted as wt

i , back to the central server,
• Step 3: The server computes updated model weights by aggregating the weights

provided by all clients through an aggregation algorithm (e.g., Fed-Avg), resulting
in an updated global model called M t with the new weights wt,

• Step 4: The server sends the updated weights wt to all CSOs for the next training
iteration, and this process continues until model convergence is achieved.

The subsequent section delves into the details of the proposed DL models, indi-
vidually trained by each CSO. Additionally, it outlines the FL aggregation techniques
employed to construct the global prediction model.

3.2 FL-based EVCS occupancy prediction models

The adopted federated framework for EVCS occupancy prediction operates on two dis-
tinct levels: local and global. At the local level, DL models are individually trained at
each CSO. In contrast, at the global level, these locally trained models are aggregated
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on a centralized server, resulting in the creation of a comprehensive global model. The
following sections provide a detailed description of each of these levels.

3.2.1 Local models

Figure 2 provides a visual representation of the workflow for constructing the local
EVCS occupancy prediction models. The local model construction is performed in
two phases: training and testing. After data preprocessing, we train the proposed DL
models using the training local dataset. During this phase, we fine-tune the model
parameters, optimizing them to minimize the loss function. Then, the trained mod-
els are employed to predict EVCS occupancy based on the testing dataset. Finally,
we employ various evaluation metrics to assess the investigated models’ predictive
performance.

Fig. 2: Conceptual framework of the proposed local prediction models.

In the presented FL framework with N clients, each CSO is denoted as Ci with a
local dataset Di = (xi, yi). We define a collection of charging stations as CS, where
each CSO owns multiple CSs. For a given CSO, Ci, we denote their set of CSs as CSi.
The problem is defined as follows:

For each CS denoted as csi ∈ CS, a learning model takes input features Xi =<
t, d, w, ort, st >, representing time of day (t), day of the week (d), weekend indicator
(w), occupancy rate (orcst ), and historical charging sequences (scst = (yt−1, yt−2, . . .),
where yt−1 is the lagged feature representing the occupancy at the previous time step
t− 1). The model aims to predict the charging occupancy for each station csi at future
time steps t + 1, t + 2, . . . , t + 6, as can be seen in Figure 2. Indeed, we represent the
problem as a binary classification task where the decision function f maps the input

Xi to a sequence of predicted values Ŷi =
[
ŷi

t+1, ŷi
t+2, . . . , ŷi

t+6
]
, where Ŷi

t+k
∈ {0, 1}

indicates whether the station csi is predicted to be occupied (1) or unoccupied (0) at
future time t + k.

The choice to predict up to 6 future time steps is motivated by an empirical evalu-
ation of the model’s predictive performance. Specifically, the analysis reveals a marked
decline in prediction accuracy beyond the sixth time step, attributed primarily to the
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increasing uncertainty associated with long-term occupancy prediction. Consequently,
constraining the prediction horizon to 6 steps achieves an optimal balance between
providing meaningful foresight and preserving predictive reliability over the next hour.

To evaluate the performance of the DL models, we employ the b inary cross-entropy
(BCE) loss function [38]. This function quantifies the difference between the model’s
predicted binary outcomes and the actual values. It is defined as follows:

BCE =
−1

k

k∑
j=1

yj . log ŷj + (1 − yj ). log(1 − ŷj ), (1)

where yj is the real value at time j, and ŷj is the predicted value.
In this study, we compare the performance of benchmark DL models for multi-step

EVCS occupancy prediction. The models we consider are LSTM, BiLSTM, CNNL-
STM, and a transformer. The overall architecture of the DL model is illustrated in
Figure 3. These models were chosen due to their distinct architectural strengths and
capabilities in addressing multi-step time series forecasting tasks.

1. LSTM [39]: are a type of Recurrent Neural Network (RNN) that can learn long-
term dependencies in time-series data. LSTM networks achieve this by using gating
mechanisms to control the flow of information through the network, making them
a good choice for multi-step times series classification tasks.

2. BiLSTM [40]: is a type of LSTM that processes input sequences in both forward
and backward directions, enabling it to capture contextual information from both
past and future time steps. The model makes more accurate predictions than a
standard RNN, which can only process sequences in the forward direction. However,
BiLSTMs are computationally expensive.

3. CNNLSTM [41]: is a fusion model that combines the strengths of LSTM net-
works and CNNs for time series prediction. By combining these two architectures,
CNNLSTM can learn spatial patterns and long-term dependencies in sequential
data, leading to more accurate predictions. This model combines the strengths of
CNNs in feature extraction and LSTMs in sequence modelling, but it requires more
computational resources and data.

4. Transformer [42]: is a type of neural network that can capture long-term patterns
and learn parallel relationships between different parts of the time series data.
Transformers first encode the input time series into a sequence of vectors, then
learn relationships between these vectors and predict the next value in the sequence.
Transformers are well-suited for multi-step time series classification because they
can capture long-range dependencies effectively through self-attention mechanisms.

3.2.2 FL global aggregation models

In each FL round r, each CSO Ci trains a local model denoted as Mr
i . As illustrated

in Figure 1, the central server utilizes an aggregation algorithm to merge the weights
of all local models received from CSOs, creating the aggregated global model denoted
as Mr for round r.
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Fig. 3: Architecture of the proposed DL models.

One of the key challenges in the aggregation process within FL is managing the
heterogeneity of local data, also known as non-IID (non-independent and identically
distributed) data [43]. This occurs because each participating CSO’s local dataset has
a distinct distribution, making the local training objectives misaligned with the global
optimum. The variability in data distributions can significantly hinder the performance
of a global model. Several studies have aimed to mitigate this challenge by optimizing
the loss function across the entire training dataset within the non-IID data context.
Below, we summarize some state-of-the-art aggregation algorithms we implemented
to tackle this issue, ensuring robust performance in a federated environment.

1. Federated Averaging (FedAvg): The FedAvg algorithm [29] is introduced as
the aggregation method in Google’s implementation of an FL system. A central
server initializes a neural model and sends it to all selected clients for local training.
Once the local training is completed, each client transmits their model’s weights
to the server for aggregation. The server uses federated averaging defined in (2)
to combine all the weights received from the clients, giving more weight to clients
with larger datasets, thus significantly influencing the aggregated model.

min
θ

F (θ) =

N∑
i=1

piFi(θ), (2)
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where pi is the weight of the i-th client such that pi ≥ 0 and
∑N

i=1 pi = 1. Fi(·)
represents the loss.

2. Federated Proximal (FedProx): FedProx algorithm [16] is a generalization of
FedAvg with a proximal term into the objective function during local training to
address the heterogeneity of data and systems. To limit the distance between the
local models and the global model, FedProx introduces L2 regularization, as shown
in the equation 3:

min
θ

F (θ) =

N∑
i=1

piFi(θ) +
µ

2
∥ω − ωt∥2, (3)

where ω is the local parameter to optimize, and ωt is the global parameters at time
t, µ is the fedprox hyper-parameter to control the weight of the L2 regularization.

3. Stochastic Controlled Averaging for FL (SCAFFOLD): SCAFFOLD [17]
addresses the challenge of non-IID data in FL by introducing variance among
clients and employing variance reduction techniques to correct local updates. This
is achieved through the use of control variates, which each client updates during
local training. These control variates are adjusted either by computing gradients
from the client’s local data relative to the global model or by reusing previously
computed gradients. SCAFFOLD significantly enhances convergence speed, espe-
cially in heterogeneous environments, but this improvement comes with a trade-off:
it increases the communication size per round compared to simpler methods like
FedAvg. The extra communication overhead results from the transmission of both
model parameters and control variates, but this cost is often outweighed by the
enhanced model accuracy and efficiency in non-IID settings.

4. FL with Personalization Layers (FedPer): The idea behind the FedPer
approach [18] is to split the model into two distinct components: base layers and
personalized layers. Only the base layers are communicated to and aggregated by
the central server, while the personalized layers remain exclusive to each client.
The base layers focus on learning general representations that are useful across all
clients and can be shared through the aggregation process, fostering collaboration.
In contrast, the personalized layers are tailored to each client’s unique data and
handle decision-making tasks, allowing for specialization based on local input. This
dual-layer structure enables FedPer to accommodate the heterogeneity of client
data, ensuring robust, individualized performance while still benefiting from shared
global knowledge.

4 Data description and pre-processing

In this section, we provide a comprehensive analysis of the dataset, outlining key
derived features and conducting a thorough data examination to capture its underlying
characteristics and trends.

This study leverages the EVCS Dundee City dataset, which encompasses 16,659
charging sessions between April 04, 2018, and May 31, 2018. Figure 4 illustrates the
geographical distribution of EVCS in the Dundee city, UK. The dataset categorizes
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CSs into three types based on their power capacity: slow stations (7kW), fast stations
(22kW), and rapid stations (≥ 43kW). Notably, the distribution of sessions across these
station types was 53.9% for slow chargers, 28.4% for rapid chargers, and 17.7% for
fast chargers. Outliers displaying unusual charging duration patterns, such as sessions
lasting over 20 hours or shorter than 10 minutes, were were systematically removed
from the dataset to ensure data quality.

Fig. 4: Spatial distribution of EVCS in the city of Dundee, UK.

Before describing the used features, let us define the set of CSs as CS and introduce
T = {1, 2, . . . , 144} as the set of discrete time indices, which correspond to a day of
24 hours, segmented into 144 intervals of 10 minutes, as previously defined by [13].
Specifically, the considered features in this study are generated using the start date
and time of each session and the corresponding end date and time. Five features are
extracted: time of the day, day of the week, weekend indicator, charging occupation
and occupancy rate.

• Charging occupation (ycst ): A charging occupation is a binary flag that indicates
a charging record of the CS at the time t ∈ T . A binary flag called ‘charging
occupation’ indicates whether a cs ∈ CS is used at a specific time t ∈ T .

• Occupancy rate (orcst ): It’s the average proportion of time, within a defined
time window, during which the CS is occupied. It is calculated by taking the mean
(average) of the occupancy values recorded for a station csi within the specified
time t.

• Charging sequence (scst ): Sequential charging records for a particular cs ∈ CS,
occurring in chronological order, denoted as s ∈ S. This sequence comprises a series
of charging occupation s =< ycst , ycst+1, y

cs
t+2 . . . y

cs
n >. Where t, t+ 1, . . . , n represent

a sequence of temporally consecutive time points, S encompasses the complete set
of charging sequences.
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Figure 5a illustrates the distribution of hourly charging sessions. As expected, a
bell-shaped distribution is observed, with a peak around noon. Notably, most charging
sessions occur between 07:00 am and 09:00 pm. This midday peak could be attributed
to users optimizing their lunch breaks for charging. Indeed, a notable observation is
the reduced frequency of charging sessions during nighttime hours. This phenomenon
is particularly prominent in public CSs, as users may prefer to charge at home at night.

(a) Hour of the Day (b) Day of the Week

Fig. 5: Distribution of charging sessions by time in the Dundee City EVCS dataset.

Following a comprehensive data analysis, Figure 5b depicts the distribution of
daily charging sessions. Notably, we observe high demand on Mondays, Tuesdays,
and Fridays, likely aligned with workweek commuting patterns. Conversely, week-
ends significantly drop, with Saturday having the lowest demand. Understanding
user behaviors is crucial for optimizing resource allocation within the EV charging
infrastructure.

Figure 6 illustrates the data’s Pearson correlation matrix [44]. Each cell’s value
indicates the degree and direction of linear association between two variables in
this matrix. Notably, we observe a strong positive correlation of 0.71 between the
‘lagged feature’ and ‘occupancy,’ indicating that past occupancy strongly influences
current occupancy levels. Additionally, we identify a moderate correlation of 0.55
between ‘occupancy rate’ and ‘occupancy’, suggesting that the CSs’ occupancy rate
is moderately related to their current occupancy status.

While the correlation matrix is valuable for assessing linear relationships between
features, it may not capture more complex or non-linear connections. We conducted
a comprehensive feature analysis using the Random Forest (RF) algorithm [45] to
understand feature importance better. The results of this analysis are depicted in
Figure 7. Results indicate that ‘lagged features’ are the most influential, contributing
to over 70% of the overall feature importance (Figure 7). These results highlight the
significance of historical charging patterns in predicting CS occupancy. The ‘occupancy
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Fig. 6: Correlation matrix of the used data.

rate’ feature follows, contributing approximately 12% to the model’s predictive power.
In contrast, ‘day of the week’ and ‘weekend’ features show lower importance, at 4% and
1%, respectively. This suggests that they have a more limited impact on the model’s
predictions than the ‘lagged features’ and ‘occupancy rate.’

To understand how much each feature contributes to a model’s output using the
Shapley Additive exPlanation (SHAP) [46] with an XGBoost model. Figure 8 illus-
trates SHAP plots generated using the XGBoost model. In the x-axis of the plot,
we find the SHAP values associated with each input feature. These values represent
the average contribution of each variable to the model output. Positive SHAP values
indicate a positive impact on the prediction, while negative values suggest a negative
impact. The y-axis lists the input features, and their positions on the plot indicate
the magnitude and direction of their influence. The color of each point corresponds to
the feature value: red represents high values, and blue represents low values. The ver-
tical spread of the points for each variable illustrates the distribution of SHAP values,
indicating the variability in the impact of that variable. The SHAP plot in Figure 8
indicates that the feature yt−1 representing occupancy at time t − 1 emerges as the
most significantly influential factor, followed by ‘occupancy rate’. This suggests that
the occupancy information from the immediate past has a pronounced impact on the
predictive outcome. Furthermore, the ‘occupancy rate’ feature closely aligns in terms
of influence, indicating that the average proportion of time during which the CS is
occupied significantly shapes the model’s predictions.
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Fig. 7: Features importance identification using RF.

Fig. 8: SHAP values visualization for feature contributions in an XGBoost model.

From Figure 8, we also observe that features such as time of the day, day of the
week, and weekend, along with other lagged data, show a relatively weaker impact on
the model’s predictions.

The data analysis highlights the importance of capturing temporal patterns for
accurate predictions and helped us better understand our dataset. Based on these
insights, we proceed to train LSTM-based models, which are specifically designed to
handle time series data and effectively capture these temporal dependencies to predict
multi-step occupancy of CSs.

It is important to note that the Dundee city charging data follows an IID distri-
bution. However, in practical scenarios, charging data exhibits a non-IID pattern. For
example, a CS near a commercial center might encounter higher usage during weekends
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than on weekdays. In the absence of publicly available non-IID EVCS datasets, we
have created non-IID datasets derived from the original Dundee city dataset, including
two non-IID scenarios:

1. Feature distribution skew: In this scenario, the data is split into four distinct
subsets, each representing a unique CSO. These subsets capture distinct charging
patterns based on both the time of day and day of the week, reflecting real-world
behavioral differences in EV usage. The subsets are designed to reflect diverse
charging needs across different user profiles, as follows:

- Subset 1 (Urban): represents urban commuters, with peak utilization during
weekday mornings (6 AM to 9 AM), reflecting high demand from workers
commuting to city centers, and significantly reduced activity on weekends.

- Subset 2 (Suburban): reflects suburban users, exhibiting high activity during
evening hours (6 PM to 9 PM) and increased usage on weekends, as these users
typically charge their vehicles after work and during leisure periods.

- Subset 3 (Commercial): reflects commercial areas, where charging demand spikes
during lunch hours (12 PM to 3 PM), aligning with business operations, and
shows heightened usage over the weekends when commercial traffic increases.

- Subset 4 (Residential): represents residential areas, with moderate evening peaks
(5 PM to 7 PM) as residents return home from work, and steady usage throughout
the week, reflecting consistent residential charging behavior.

This division simulates diverse utilization patterns at different locations, mim-
icking real-world conditions where CSs exhibit varying charging behaviors. This
ensures that each CSO dataset captures unique and realistic usage patterns.

2. Imbalanced datasets: In this scenario, the data is again divided into four distinct
subsets, each assigned to a different CSO. To emulate real-world disparities in
station occupancy, we deliberately introduced imbalances in the class distribution
of the target variable. These imbalances capture variations in the usage of CSs,
highlighting different occupancy patterns:

- Subset 1 (Low demand): primarily consists of underutilized or mostly unoccupied
stations, where class 0 (unoccupied) significantly dominates class 1 (occupied),
representing stations with low demand.

- Subset 2 (Severe underutilization): exhibits an even stronger class 0 imbal-
ance, with extreme underutilization and very few instances of occupied stations,
modeling severely underused CSs.

- Subset 3 (High demand): mainly consists of highly occupied stations, where
class 1 (occupied) overwhelmingly surpasses class 0, reflecting locations with
consistently high demand and usage.

- Subset 4 (Moderate demand): a mixed or more balanced subset, where the dis-
tribution between class 0 and class 1 is closer to even, representing moderate
utilization.

CSs often experience unequal demand based on their location and the surround-
ing area’s usage patterns. By introducing these imbalances we create a dataset that
better mirrors the diverse conditions seen in practice. This allows us to evaluate
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how FL algorithms perform under imbalanced class distributions, particularly when
certain classes, like station occupancy, are underrepresented.

5 Results and discussions

In this section, we explain the methodology used to train the models and provide an
overview of the metrics employed to evaluate the effectiveness of these proposed DL
models. We then present the results of our analysis, focusing on two distinct scenarios:
the impact of feature distribution skewness and the challenge of imbalanced datasets.
Finally, we engage in a comprehensive discussion of our findings.

5.1 Dataset partitioning and model hyperparameters

In our experiments, we prepare the datasets of the CSOs by carefully partitioning
them into a training set and a test set, maintaining a balanced 7:3 ratio. The training
process used 5-fold cross-validation to prevent overfitting and improve generalization.
The dataset was split into five parts, with each part taking turns as the validation set
while the others were used for training, ensuring robust performance evaluation. To
achieve optimal performance, we conduct hyperparameter fine-tuning. The number of
federated clients (i.e., CSOs) is set to N = 4. We settle on a learning rate of η = 0.001,
training epochs E = 30, batch size B = 256, and training rounds R = 20. The LSTM
model comprises two layers, the BiLSTM model has two layers of LSTM, the CNNL-
STM model has one convolutional layer and 2 LSTM layers, and the Transformer
model has three transformer layers. All models incorporate three fully connected lay-
ers. As for the activation functions, we select a Rectified Linear Unit (ReLU) for LSTM
and fully connected layers, while the output layer uses Sigmoid. Regarding aggrega-
tion methods employed at the central server, in the FedProx approach, a proximal
term with a parameter value of µ = 0.01 is applied, while FedAvg utilizes µ = 0. The
FedPer approach incorporates two personalized layers into each proposed model. For
the SCAFFOLD, a weight decay of 0.01 is defined.

The models evaluated in this paper are developed in Python and simulated on a
Windows workstation equipped with an NVIDIA GeForce RTX3060 GPU, an Intel
12th Gen Core i7-12700 Processor CPU, and 32 GB of RAM. The simulations are
performed using PyTorch 1.11.0 on the Visual Studio Code platform.

5.2 Evaluation metrics

The performance of the prediction models is assessed using the following key
metrics [47]:

• Accuracy : The proportion of correct predictions out of the total instances.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

• Precision : The proportion of correct positive predictions, reducing false positives.
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Precision =
TP

TP + FP
(5)

• Recall (Sensitivity): The proportion of actual positives correctly predicted,
reducing false negatives.

Recall =
TP

TP + FN
(6)

• F1 score: The harmonic mean of precision and recall, balancing false positives and
negatives.

F1-score =
2 · precision · recall

precision + recall
(7)

• AUC (Area Under ROC Curve): Measures a model’s ability to distinguish
between classes. A higher AUC indicates better performance, with 1 representing
perfect classification.

5.3 Case 1: Features distribution skew

In this section, the results of multistep predictions are presented, evaluating the per-
formance of the different aggregation algorithms (FedAvg, FedProx, SCAFFOLD,
FedPer) across DL models (LSTM, BiLSTM, CNNLSTM, Transformer) in the case of
features distribution skew. The prediction time window extends from 1 (10 minutes)
to 6 (60 minutes) time steps ahead.

Fig. 9: AUC values with 95% confidence intervals for different Models and Aggregators
across varying time intervals within the context of features distribution skew.

In Figure 9, the AUC values, along with their 95% confidence intervals, demon-
strate diverse model performance across various aggregation methods, ranging from
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0.5 to 0.967 for one time step ahead with a 10-minute interval. The error bars in each
plot represent the confidence intervals, indicating the level of uncertainty associated
with each model’s performance. Notably, smaller error bars suggest more consistent
and reliable model predictions, whereas larger error bars imply greater variability and
less stability in the results.

The FedAvg aggregator demonstrates robust performance across all models,
achieving high AUC values, such as 0.97 for LSTM and 0.96 for both BiLSTM and
CNNLSTM, while maintaining relatively narrow error bars, indicating reliability in
its predictions. Additionally, under FedProx, BiLSTM, CNNLSTM, and Transformer,
they achieve AUC values of 0.96, but with varying confidence intervals. FedPer pro-
duces notable results, with LSTM and CNNLSTM reaching AUC values of 0.96. In the
case of SCAFFOLD, the Transformer model stands out with an AUC of 0.96, although
the error bars suggest slightly higher uncertainty in its predictive performance.

Table 2: Performance metrics for FedAvg, FedProx, SCAFFOLD, and FedPer using
different models in the feature distribution skew scenario for 10 minutes ahead.

Aggregators FL Model
Metrics

Accuracy Precision Recall F1-Score

FedAvg

LSTM 0.972 0.972 0.972 0.972
BiLSTM 0.967 0.967 0.967 0.967

CNNLSTM 0.967 0.967 0.967 0.967
Transformer 0.697 0.840 0.697 0.707

FedProx

LSTM 0.700 0.490 0.700 0.577
BiLSTM 0.967 0.967 0.967 0.967

CNNLSTM 0.967 0.967 0.967 0.967
Transformer 0.967 0.967 0.967 0.967

SCAFFOLD

LSTM 0.700 0.490 0.700 0.577
BiLSTM 0.749 0.853 0.749 0.759

CNNLSTM 0.842 0.839 0.842 0.840
Transformer 0.966 0.966 0.966 0.966

FedPer

LSTM 0.967 0.967 0.967 0.967
BiLSTM 0.700 0.490 0.700 0.577

CNNLSTM 0.967 0.967 0.967 0.967
Transformer 0.700 0.490 0.700 0.577

Table 2 and Table 3 demonstrate that FedAvg achieves strong performance with
high accuracy, precision, recall, F1-Score, and AUC across LSTM, BiLSTM, and
CNNLSTM models. Specifically, it achieves an accuracy of 0.972 for the LSTM model
and 0.967 for both BiLSTM and CNNLSTM while showing a comparatively lower
accuracy of 0.697 for the Transformer model. In contrast, FedProx and SCAFFOLD
showed more mixed results. While the LSTM models within these approaches faced
challenges with an accuracy of 0.7, other models like BiLSTM, CNNLSTM, and Trans-
former excelled with 0.967 accuracy. FedPer also presented various results, with some
models achieving an accuracy of 0.967 while others faced challenges with an accuracy
of 0.7.
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Table 3: Performance metrics for FedAvg, FedProx, SCAFFOLD, and FedPer using
different models in the feature distribution skew scenario for one-hour ahead.

Aggregators FL Model
Metrics

Accuracy Precision Recall F1-Score

FedAvg

LSTM 0.918 0.919 0.918 0.919
BiLSTM 0.845 0.846 0.845 0.845

CNNLSTM 0.846 0.847 0.846 0.847
Transformer 0.639 0.778 0.639 0.650

FedProx

LSTM 0.700 0.490 0.700 0.577
BiLSTM 0.844 0.843 0.844 0.843

CNNLSTM 0.844 0.844 0.844 0.844
Transformer 0.839 0.839 0.839 0.839

SCAFFOLD

LSTM 0.700 0.490 0.700 0.577
BiLSTM 0.699 0.792 0.699 0.712

CNNLSTM 0.799 0.792 0.799 0.794
Transformer 0.835 0.842 0.835 0.838

FedPer

LSTM 0.886 0.886 0.886 0.886
BiLSTM 0.700 0.490 0.700 0.577

CNNLSTM 0.812 0.832 0.812 0.817
Transformer 0.700 0.490 0.700 0.577

These findings show that, for the given prediction task, the choice of aggregation
algorithm significantly influences model performance. LSTM-FedAvg stands out as
a robust option, particularly for improving prediction accuracy in multistep ranging
from 10 minutes to one hour. Additional details regarding the results for all prediction
time steps ahead can be found in Appendix 6.

5.4 Case 2: Imbalanced dataset

Table 4 and Table 5 present the performance metrics for various FL aggregation
algorithms, including FedAvg, FedProx, SCAFFOLD, and FedPer, across distinct DL
models in the scenario of an imbalanced dataset (e.g., high, moderate, low, and vari-
able utilization stations), across the 10 minutes, FedAvg achieves a moderate accuracy
range of 0.7 to 0.82. It demonstrates a balanced precision, recall, and F1-Score for
LSTM and BiLSTM models. The CNNLSTM model stands out with a higher accu-
racy range of 0.82 to 0.82, showcasing a well-balanced performance. However, the
Transformer model consistently lags with an accuracy of 0.7. FedProx significantly
enhances performance, particularly for LSTM and BiLSTM models, achieving accu-
racy above 0.92. SCAFFOLD and FedPer outperform other aggregators across all
models, displaying high accuracy 0.97, precision, recall, F1-Score, and AUC. Moving
to the 60-minute prediction horizon, FedProx and FedPer achieve an accuracy ranging
from 0.82 to 0.96. SCAFFOLD outperforms FedAvg in most cases. The results under-
score the effectiveness of SCAFFOLD and FedPer in handling imbalanced datasets
and long-term predictions.

From Figure 10, for a one-time step prediction ahead, AUC achieved with FedPer
ranges from 0.92 to 0.96 across the four DL models. The error bars for FedPer, although
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Table 4: Performance metrics for FedAvg, FedProx, SCAFFOLD, and FedPer using
different models in the imbalanced dataset scenario for 10 minutes ahead.

Aggregators FL Model
Metrics

Accuracy Precision Recall F1-Score

FedAvg

LSTM 0.789 0.824 0.789 0.749
BiLSTM 0.705 0.774 0.705 0.587

CNNLSTM 0.820 0.819 0.820 0.820
Transformer 0.700 0.490 0.700 0.577

FedProx

LSTM 0.924 0.926 0.924 0.922
BiLSTM 0.961 0.961 0.961 0.961

CNNLSTM 0.700 0.490 0.700 0.577
Transformer 0.700 0.490 0.700 0.577

SCAFFOLD

LSTM 0.700 0.490 0.700 0.577
BiLSTM 0.967 0.967 0.967 0.967

CNNLSTM 0.966 0.966 0.966 0.966
Transformer 0.967 0.967 0.967 0.967

FedPer

LSTM 0.945 0.945 0.945 0.944
BiLSTM 0.966 0.966 0.966 0.966

CNNLSTM 0.966 0.966 0.966 0.966
Transformer 0.967 0.967 0.967 0.967

Fig. 10: AUC values with 95% confidence intervals for different Models and Aggre-
gators across varying time intervals within the context of imbalanced dataset.

present, are relatively small, indicating moderate variability in model performance,
with a consistent reliability of predictions.

Additionally, SCAFFOLD achieved a high AUC of 0.96 using BiLSTM and Trans-
former, and the error bars for this algorithm are narrow, suggesting stable performance
with low variability across these models. In contrast, FedAvg shows a lower maxi-
mum AUC of 0.78 with CNNLSTM, and the larger error bars associated with this
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combination reflect a higher level of uncertainty in its predictions, highlighting the
inconsistency of FedAvg under this configuration.

Results revealed that FL based on SCAFFOLD and FedPer performs well in han-
dling imbalanced datasets. This could be attributed to SCAFFOLD’s utilization of
control variates, allowing it to converge to the global model for the union of all CSOs’
datasets. Specifically, the control variates in SCAFFOLD will enable the model to
incorporate information from the combined datasets of all CSOs and ensure that the
global model is not biased towards the dataset of any specific CSO. On the other hand,
FedPer’s effectiveness can be attributed to its incorporation of personalized layers
designed to capture the particular characteristics and patterns within each federated
client (i.e., CSO). Incorporating personalized layers allows FedPer to adapt its model
parameters to better align with the nuances of individual CSO datasets. These aggre-
gation methods enhance performance in predicting EVCS availability, mainly when
dealing with imbalanced data distributions. This is crucial in scenarios where cer-
tain classes, such as occupied or unoccupied CSs, may be underrepresented in specific
CSOs.

Table 5: Performance metrics for FedAvg, FedProx, SCAFFOLD, and FedPer using
different models in the imbalanced dataset scenario for one-hour ahead.

Aggregators FL Model
Metrics

Accuracy Precision Recall F1-Score

FedAvg

LSTM 0.746 0.750 0.746 0.692
BiLSTM 0.702 0.722 0.702 0.584

CNNLSTM 0.755 0.753 0.755 0.754
Transformer 0.700 0.490 0.700 0.577

FedProx

LSTM 0.825 0.820 0.825 0.820
BiLSTM 0.837 0.836 0.837 0.837

CNNLSTM 0.700 0.490 0.700 0.577
Transformer 0.700 0.490 0.700 0.577

SCAFFOLD

LSTM 0.700 0.490 0.700 0.577
BiLSTM 0.839 0.839 0.839 0.839

CNNLSTM 0.842 0.842 0.842 0.842
Transformer 0.839 0.841 0.839 0.840

FedPer

LSTM 0.827 0.824 0.827 0.825
BiLSTM 0.842 0.842 0.842 0.842

CNNLSTM 0.842 0.842 0.842 0.842
Transformer 0.839 0.841 0.839 0.840

Table 6 summarizes the best-performing methods for predicting EVCS occupancy
10 minutes ahead. It highlights the most suitable combinations of DL and FL aggrega-
tion strategies tailored to each scenario. The performance metrics—accuracy, F1-Score,
and AUC—demonstrate the effectiveness of these methods, achieving values as high
as 97% in both cases.
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Table 6: Summary of the best FL aggregation methods and DL models across both
scenarios.

Scenario Best DL Model Best Aggregator Key
Performance

Case 1: Feature
distribution skew

LSTM FedAvg

Accuracy: 97%

F1-Score: 97%

AUC: 97%

Case 2: Imbalanced
dataset

BiLSTM/CNNLSTM SCAFFOLD/FedPer

Accuracy: 97%

F1-Score: 97%

AUC: 97%

6 Conclusion

As the adoption of EVs continues to rise, the need for effective management of CS
resources becomes paramount. This study addresses the growing demand for public
CSs, emphasizing the vital role of occupancy forecasting in enhancing the accessibility
of EV charging infrastructure. Our goal is to optimize EVCS utilization through pre-
cise availability prediction, ultimately fostering greater convenience for EV users. The
paper introduces an efficient Federated Deep Learning framework, focusing primar-
ily on the advantages of preserving data privacy and reducing data transfer. Within
the context of FL, multiple heterogeneous CSOs operate as federated clients, col-
laborating under the supervision of a central server responsible for aggregating their
local models. The study leverages a diverse set of aggregation algorithms, includ-
ing FedAvg, FedProx, SCAFFOLD, and FedPer, to address the significant challenge
posed by the real-world scenario of non-IID CS data. Four distinct local DL models,
encompassing LSTM, BiLSTM, CNNLSTM, and Transformer, are proposed for EVCS
occupancy prediction. The study’s evaluation utilises a non-IID dataset derived from
the real-world Dundee city EVCS dataset. In the initial scenario, a feature distribution
skew is introduced, with each CSO displaying a distinct feature distribution, setting
them apart from the other CSOs. The second scenario is characterised by imbalanced
class distributions among the CSOs, with some having significantly more or fewer
instances for the predicted class, whether ‘free’ or ‘occupied’. These scenarios provide
a robust evaluation framework, allowing for a comprehensive assessment of the mod-
els’ performance in addressing real-world challenges associated with EVCS availability
prediction.

The results underscore the effectiveness of FedPer and SCAFFOLD-based FL in
handling imbalanced datasets. In contrast, FedAvg excels when dealing with data
characterized by skewed feature distributions, particularly for forecasts one hour ahead
based on data sampled at 10-minute intervals. Additionally, the analysis using Random
Forest and SHAP values indicates that including lagged data significantly improves
multistep predictions. However, features such as time of the day, day of the week,
and weekend showed a weaker impact on the model’s predictions. As these features
contribute less substantially to the model’s predictions in comparison to the more
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influential features, this could justify the satisfactory results of using FedAvg in the
context of skewed datasets, as described in scenario one.

Future work in this domain can explore several research directions. Firstly, further
research could focus on refining the FL process by optimizing communication overhead,
a critical aspect of real-world applications. Secondly, extending the study to include
more diverse and larger datasets from various cities or regions could provide a more
comprehensive evaluation of the proposed methods’ generalizability and robustness.
Additionally, integrating predictive occupancy models with an EVCS recommender
system could enhance the overall user experience by providing drivers with personal-
ized recommendations for available CSs. Finally, the predictive models developed in
this study could be leveraged to improve the management and maintenance planning
of CSs, enabling CSOs to make data-driven decisions for optimizing CS utilization.

Another important direction for improvement lies in incorporating uncertainty
quantification into the FL process. In future work, we plan to explore Bayesian Fed-
erated Deep Learning, which incorporates uncertainty quantification. This approach
will enable not only a more comprehensive evaluation of model performance but also
a deeper understanding of the uncertainty in predictions. By capturing uncertainties,
this method will offer more robust insights into the accuracy, precision, recall, and F1
scores, including their variances. Compared to conventional Federated Deep Learning,
Bayesian FL provides the added advantage of quantifying uncertainty, which is partic-
ularly valuable in applications like EVCS occupancy prediction where the reliability
of model predictions directly influences operational decisions. By offering more precise
information about model confidence, this approach can significantly enhance decision-
making processes, improving the efficiency of grid management and optimizing CS
availability in real-world, dynamic environments.
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Appendix

This section provides detailed insights into the results obtained using various metrics
across both prediction scenarios and for all time intervals.

Table (6) Performance metrics in the feature distribution skew scenario for (a) 20 min and
(b) 30 min (c) 40 min (d) 50 min ahead.

Aggregators FL Model
Metrics

Accuracy Precision Recall F1-Score AUC

FedAvg

LSTM 0.954 0.954 0.954 0.954 0.946
BiLSTM 0.936 0.936 0.936 0.936 0.923

CNNLSTM 0.936 0.936 0.936 0.936 0.923
Transformer 0.685 0.827 0.685 0.695 0.764

FedProx

LSTM 0.700 0.490 0.700 0.577 0.500
BiLSTM 0.936 0.936 0.936 0.936 0.923

CNNLSTM 0.936 0.936 0.936 0.936 0.923
Transformer 0.936 0.936 0.936 0.936 0.923

SCAFFOLD

LSTM 0.700 0.490 0.700 0.577 0.500
BiLSTM 0.738 0.840 0.738 0.748 0.800

CNNLSTM 0.833 0.830 0.833 0.830 0.785
Transformer 0.936 0.936 0.936 0.936 0.923

FedPer

LSTM 0.941 0.941 0.941 0.941 0.933
BiLSTM 0.700 0.490 0.700 0.577 0.500

CNNLSTM 0.936 0.936 0.936 0.936 0.923
Transformer 0.700 0.490 0.700 0.577 0.500

(a)

Aggregators FL Model
Metrics

Accuracy Precision Recall F1-Score AUC

FedAvg

LSTM 0.943 0.943 0.943 0.943 0.933
BiLSTM 0.908 0.908 0.908 0.908 0.890

CNNLSTM 0.908 0.908 0.908 0.908 0.890
Transformer 0.673 0.815 0.673 0.683 0.751

FedProx

LSTM 0.700 0.490 0.700 0.577 0.500
BiLSTM 0.909 0.909 0.909 0.909 0.890

CNNLSTM 0.908 0.908 0.908 0.908 0.888
Transformer 0.908 0.908 0.908 0.908 0.890

SCAFFOLD

LSTM 0.700 0.490 0.700 0.577 0.500
BiLSTM 0.726 0.828 0.726 0.737 0.786

CNNLSTM 0.824 0.820 0.824 0.821 0.774
Transformer 0.908 0.908 0.908 0.908 0.890

FedPer

LSTM 0.921 0.922 0.921 0.922 0.911
BiLSTM 0.700 0.490 0.700 0.577 0.500

CNNLSTM 0.908 0.909 0.908 0.908 0.893
Transformer 0.700 0.490 0.700 0.577 0.500
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(b)

Aggregators FL Model
Metrics

Accuracy Precision Recall F1-Score AUC

FedAvg

LSTM 0.936 0.936 0.936 0.936 0.923
BiLSTM 0.884 0.884 0.884 0.884 0.860

CNNLSTM 0.884 0.883 0.884 0.884 0.860
Transformer 0.661 0.802 0.661 0.672 0.737

FedProx

LSTM 0.700 0.490 0.700 0.577 0.500
BiLSTM 0.885 0.885 0.885 0.885 0.861

CNNLSTM 0.883 0.882 0.883 0.882 0.856
Transformer 0.883 0.882 0.883 0.882 0.860

SCAFFOLD

LSTM 0.700 0.490 0.700 0.577 0.500
BiLSTM 0.717 0.815 0.717 0.729 0.773

CNNLSTM 0.815 0.810 0.815 0.811 0.761
Transformer 0.883 0.883 0.883 0.883 0.860

FedPer

LSTM 0.906 0.907 0.906 0.906 0.892
BiLSTM 0.700 0.490 0.700 0.577 0.500

CNNLSTM 0.869 0.875 0.869 0.871 0.859
Transformer 0.700 0.490 0.700 0.577 0.500

(c)

Aggregators FL Model
Metrics

Accuracy Precision Recall F1-Score AUC

FedAvg

LSTM 0.929 0.929 0.929 0.929 0.915
BiLSTM 0.862 0.860 0.862 0.861 0.829

CNNLSTM 0.863 0.862 0.863 0.863 0.835
Transformer 0.650 0.790 0.650 0.661 0.724

FedProx

LSTM 0.700 0.490 0.700 0.577 0.500
BiLSTM 0.864 0.863 0.864 0.863 0.834

CNNLSTM 0.862 0.862 0.862 0.862 0.835
Transformer 0.860 0.860 0.860 0.860 0.832

SCAFFOLD

LSTM 0.700 0.490 0.700 0.577 0.500
BiLSTM 0.708 0.804 0.708 0.720 0.760

CNNLSTM 0.806 0.800 0.806 0.801 0.748
Transformer 0.858 0.860 0.858 0.859 0.838

FedPer

LSTM 0.895 0.895 0.895 0.895 0.877
BiLSTM 0.700 0.490 0.700 0.577 0.500

CNNLSTM 0.839 0.850 0.839 0.842 0.833
Transformer 0.700 0.490 0.700 0.577 0.500
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Table (7) Performance metrics in the imbalanced dataset scenario for (a) 20 min and (b) 30
min (c) 40 min (d) 50 min ahead.

Aggregators FL Model
Metrics

Accuracy Precision Recall F1-Score AUC

FedAvg

LSTM 0.776 0.805 0.776 0.732 0.636
BiLSTM 0.704 0.757 0.704 0.586 0.506

CNNLSTM 0.805 0.804 0.805 0.805 0.765
Transformer 0.700 0.490 0.700 0.577 0.500

FedProx

LSTM 0.898 0.898 0.898 0.895 0.853
BiLSTM 0.931 0.931 0.931 0.931 0.914

CNNLSTM 0.700 0.490 0.700 0.577 0.500
Transformer 0.700 0.490 0.700 0.577 0.500

SCAFFOLD

LSTM 0.700 0.490 0.700 0.577 0.500
BiLSTM 0.936 0.936 0.936 0.936 0.923

CNNLSTM 0.936 0.935 0.936 0.936 0.922
Transformer 0.936 0.936 0.936 0.936 0.923

FedPer

LSTM 0.916 0.916 0.916 0.915 0.889
BiLSTM 0.936 0.935 0.936 0.936 0.922

CNNLSTM 0.936 0.935 0.936 0.936 0.922
Transformer 0.936 0.936 0.936 0.936 0.923

(a)

Aggregators FL Model
Metrics

Accuracy Precision Recall F1-Score AUC

FedAvg

LSTM 0.766 0.789 0.766 0.719 0.622
BiLSTM 0.703 0.745 0.703 0.585 0.506

CNNLSTM 0.790 0.789 0.790 0.790 0.746
Transformer 0.700 0.490 0.700 0.577 0.500

FedProx

LSTM 0.878 0.877 0.878 0.875 0.831
BiLSTM 0.904 0.903 0.904 0.903 0.882

CNNLSTM 0.700 0.490 0.700 0.577 0.500
Transformer 0.700 0.490 0.700 0.577 0.500

SCAFFOLD

LSTM 0.700 0.490 0.700 0.577 0.500
BiLSTM 0.908 0.908 0.908 0.908 0.890

CNNLSTM 0.908 0.908 0.908 0.908 0.889
Transformer 0.908 0.908 0.908 0.908 0.890

FedPer

LSTM 0.890 0.889 0.890 0.889 0.857
BiLSTM 0.908 0.908 0.908 0.908 0.889

CNNLSTM 0.908 0.908 0.908 0.908 0.889
Transformer 0.908 0.908 0.908 0.908 0.890
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(b)

Aggregators FL Model
Metrics

Accuracy Precision Recall F1-Score AUC

FedAvg

LSTM 0.760 0.775 0.760 0.712 0.615
BiLSTM 0.703 0.740 0.703 0.584 0.505

CNNLSTM 0.778 0.776 0.778 0.777 0.732
Transformer 0.700 0.490 0.700 0.577 0.500

FedProx

LSTM 0.860 0.857 0.860 0.856 0.811
BiLSTM 0.880 0.879 0.880 0.879 0.853

CNNLSTM 0.700 0.490 0.700 0.577 0.500
Transformer 0.700 0.490 0.700 0.577 0.500

SCAFFOLD

LSTM 0.700 0.490 0.700 0.577 0.500
BiLSTM 0.883 0.882 0.883 0.882 0.860

CNNLSTM 0.883 0.883 0.883 0.883 0.860
Transformer 0.883 0.883 0.883 0.883 0.861

FedPer

LSTM 0.867 0.865 0.867 0.865 0.829
BiLSTM 0.883 0.883 0.883 0.883 0.860

CNNLSTM 0.883 0.883 0.883 0.883 0.860
Transformer 0.883 0.883 0.883 0.883 0.861

(c)

Aggregators FL Model
Metrics

Accuracy Precision Recall F1-Score AUC

FedAvg

LSTM 0.750 0.761 0.750 0.697 0.600
BiLSTM 0.703 0.725 0.703 0.584 0.505

CNNLSTM 0.766 0.764 0.766 0.765 0.717
Transformer 0.700 0.490 0.700 0.577 0.500

FedProx

LSTM 0.841 0.837 0.841 0.837 0.787
BiLSTM 0.857 0.856 0.857 0.856 0.826

CNNLSTM 0.700 0.490 0.700 0.577 0.500
Transformer 0.700 0.490 0.700 0.577 0.500

SCAFFOLD

LSTM 0.700 0.490 0.700 0.577 0.500
BiLSTM 0.860 0.860 0.860 0.860 0.832

CNNLSTM 0.861 0.861 0.861 0.861 0.833
Transformer 0.859 0.860 0.859 0.860 0.836

FedPer

LSTM 0.846 0.843 0.846 0.844 0.805
BiLSTM 0.861 0.861 0.861 0.861 0.833

CNNLSTM 0.861 0.861 0.861 0.861 0.833
Transformer 0.859 0.860 0.859 0.860 0.836
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