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Özetçe
Elektrikli araçlarda akıllı enerji yönetim sistemleri büyük önem 
taşır; bu sistemlerin yüksek oranda yazılım içermesi ve 
yazılımların gürbüzlüklerinin emniyet açısından kritik olması 
nedeniyle yoğun bir şekilde test edilmeleri gerekmektedir. Bu 
nedenle, yazılımların gürbüzlüklerin test edilmesi için test 
senaryoları üretilmesi gerekmektedir. Bu çalışma, Google'ın 
CodeGemma ve Meta'nın CodeLLaMa büyük dil modellerinin 
elektrikli araç yazılımları için test senaryoları üretme 
yeteneklerini incelemektedir. CodeGemma, kod tamamlama ve 
doğal dil anlama gibi görevlerde üstün performans gösterirken, 
CodeLLaMa kod üretimi ve hata tespitinde uzmanlaşmıştır. Her 
iki model, elektrikli araç yazılımlarına ait aynı kaynak kodlarla 
maksimum sayıda test senaryosu üretmiş ve performansları dil 
bilgisi ve kaynak kod uyumluluğu açısından çapraz 
değerlendirme ile incelenmiştir. Sonuçlar, GPT-4o ve LLaMa3 
modelleri ile puanlanarak analiz edilmiştir. Çalışmanın amacı, 
test senaryolarının kalitesini artırarak elektrikli araçlarda 
bulunan akıllı enerji yönetim sistemlerindeki yazılım test 
süreçlerini iyileştirmektir. Bulgular, dil modellerinin,
gerçekleştirilen test süreçlerinde verimliliği artırmada önemli 
bir rol oynayabileceğini göstermektedir.

Abstract
Intelligent energy management systems in electric vehicles are 
of great importance; these systems heavily rely on software, and 
the robustness of these software components is critical for 
safety, necessitating extensive testing. Therefore, it is essential 
to generate test scenarios to assess the robustness of the 
software. This study examines the capabilities of Google's 
CodeGemma and Meta's CodeLLaMa large language models in 
generating test scenarios for electric vehicle software. 
CodeGemma excels in tasks such as code completion and 
natural language understanding, while CodeLLaMa specializes 
in code generation and error detection. Both models generated 
the maximum number of test scenarios from the same source 

code of electric vehicle software, and their performance was 
evaluated through cross-assessment for linguistic accuracy and 
code compatibility. The results were analyzed using GPT-4o
and LLaMa3 models. Test scenarios are created and evaluated 
using CodeGemma and CodeLLaMa. The aim of this study is 
to enhance the quality of test scenarios and improve the 
software testing processes in intelligent energy management 
systems in electric vehicles. The findings suggest that language 
models can play a significant role in increasing efficiency in the 
testing processes.

1. Introduction
Smart energy management systems in electric vehicles are 
highly important, and these systems incorporate a significant 
amount of software; due to the critical nature of the robustness 
of these software systems for safety, they must undergo 
rigorous testing. The automatic generation of test scenarios for 
electric vehicle software is crucial for enhancing software 
quality and accelerating development processes. Test scenarios 
are utilized to validate the expected behaviors of the software, 
detect potential errors, and increase the software's reliability. 
The use of large language models for generating test scenarios 
is shown in our study and the literature to have a positive impact 
on efficiency and effectiveness in software testing processes.
In this study, the test scenario generation capabilities of two 
different large language models, CodeGemma developed by 
Google and CodeLLaMa developed by Meta, for electric 
vehicle software are examined [1,2]. CodeGemma is built on 
Google's Gemma models and demonstrates superior 
performance in tasks such as code completion, natural language 
understanding, and mathematical reasoning [3]. CodeLLaMa, 
on the other hand, is built on Meta's LLaMa2, trained on 
extensive datasets, and specialized in areas like code
generation, error detection, and optimization [4]. Both models 
were provided with the same source code and commands 
related to electric vehicle software and were asked to generate 



as many test scenarios as possible. Their performance was 
evaluated in terms of linguistic quality and compatibility with 
the source code. The main goal of the study is to improve 
software testing processes by enhancing the quality of the test 
scenarios produced by these models. The findings of the study 
indicate that language models can play a significant role in 
generating test scenarios.
Previous studies have shown that the integration of artificial 
intelligence technologies into software testing processes offers 
significant advantages in terms of accelerating these processes 
and enhancing their efficiency. Jaber et al. investigated the 
automatic generation of test scenarios using artificial 
intelligence and machine learning [5]. Li et al. discussed the 
role of artificial intelligence in test automation and its 
contributions to software testing processes [6]. Large language 
models, in particular, stand out as effective tools for the 
automatic generation of software test scenarios. Yang et al. 
introduced Text2Reaction, a large language model-based 
framework that enables robots to respond to environmental 
changes [7]. Ionescu and Enescu explored how ChatGPT can 
be used in the processes of creating and evaluating online tests 
[8]. Studies on the capabilities of large language models to 
detect and correct errors in Python programs demonstrate their 
effectiveness. Wuisang et al. evaluated ChatGPT's performance 
in automatic error detection and correction using the QuixBugs 
benchmark set [9].
Studies have shown that large language models can be 
successfully used in tasks that are more verbal in nature, such 
as the generation of test scenarios. Schafer et al. presented a 
comparative analysis of large language model-based test 
generation techniques versus traditional methods [10]. Lee and 
Hsiang examined the use of the BERT model in patent 
classification tasks [11]. Wei et al. evaluated the performance 
of the DistilBERT model in reviewing legal documents [12]. 
Automatic test data generation is an important method for 
increasing code coverage in software. Avdeenko and 
Serdyukov proposed an approach aimed at generating test data 
using genetic algorithms [13]. Studies on the effectiveness of 
completing software test scenarios using control flow graphs
play a significant role in increasing test coverage. Zhang et al. 
presented coverage measurement methods for equipment 
software system testing [14]. Additionally, Caglar et al. 
discussed how cloud-based platforms like ChArIoT can 
improve software testing processes [15]. ISTA has been 
developed as a tool supporting various coverage criteria for 
deep neural networks. Zheng et al. examined the impact of this 
tool on test case generation and optimization [16].
This study, which aims to enhance the efficiency and accuracy 
of artificial intelligence techniques used in generating test 
scenarios, we go beyond existing methods in the generation and 
evaluation of test scenarios for electric vehicle software. It has 
been demonstrated that automatic test scenario generation using 
language models offers significant forward-looking findings in 
the fields of software engineering and test automation. A 
comprehensive methodology was followed to examine the 
effectiveness of using language models in generating and 
evaluating test scenarios for electric vehicle software. The test 
scenario generation capabilities of CodeGemma, developed by 
Google, and CodeLLaMa, developed by Meta, were compared 
for electric vehicle software. At the initial stage of the study, 
both models were provided with the same source codes and 
commands to generate the maximum number of test scenarios. 
The generated test scenarios were evaluated based on criteria 

such as linguistic accuracy, adherence to grammatical rules, and 
compatibility with the source code. During this process, the 
models performed a cross-check by analyzing each other's 
generated scenarios. Where necessary, additions were made to 
enhance the quality of the test scenarios, and in the final step, 
the test scenarios were scored using the GPT-4o and LLaMa3 
models to evaluate their overall performance. The findings 
revealed that both CodeGemma and CodeLLaMa models 
achieved high accuracy and compatibility in generating test 
scenarios. However, CodeGemma generally exhibited superior 
performance. It was determined that both models have the 
potential to improve the testing processes of electric vehicle 
software. These results indicate that large language models can 
make significant contributions to the fields of software 
engineering and test automation, playing a critical role in 
increasing efficiency and effectiveness beyond existing 
methods.
In the subsequent sections of the study, the details of the 
CodeGemma and CodeLLaMa models, as well as the software 
and hardware components used, will be elaborated upon. The 
third section will detail the proposed method and the command 
engineering techniques used, explaining the procedures 
undertaken to generate the maximum number of test scenarios. 
Finally, in the fourth section, the test scenarios generated by the 
models will be compared in terms of linguistic and source code 
compatibility, and the results will be evaluated.

2. Large Language Models Used in the
Study

The increasing importance of artificial intelligence 
technologies in software engineering processes necessitates the 
use of these technologies for the automatic generation of test 
scenarios for electric vehicle software. The capabilities of 
CodeGemma, CodeLLaMa, LLaMa3, and GPT-4o models in 
generating and evaluating test scenarios for electric vehicle 
software using large language models are examined in detail 
(Table 1).

Table 1 Details of Large Language Models Used in the 
Study

Features CodeGemma CodeLLaMa GPT-4o LLaMa3

Developer Google Meta OpenAI Meta
Training 
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(code and 
English 
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Python, 
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Python, 
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C++, C#, 
JavaScrip

Python, 
Java, 
C++, 
C#, 
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C++, Go, 
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e test 
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generati

on,
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d for 
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vehicle 
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2.1. CodeGemma
Developed by Google, CodeGemma is a high-performance 
model in the fields of code completion and generation, trained 
on 500 billion code tokens. Available in 2B and 7B parameter 
sizes, the model is effective in generating complex test 
scenarios thanks to its natural language processing and 
mathematical reasoning capabilities. CodeGemma, which 
produces strong and consistent outputs with the "Fill-in-the-
Middle (FIM)" training approach, offers advantages in real-
time software development projects with low latency. These 
capabilities accelerate testing processes, enabling the early 
detection of software bugs.
2.2. CodeLLaMa
Developed by Meta, CodeLLaMa is a large language model 
with extensive code and language comprehension capabilities. 
The model, which can generate complex test scenarios with its 
advanced natural language processing abilities, contributes to 
software development and test automation processes. 
CodeLLaMa can create test scenarios with high accuracy in 
various programming languages and software frameworks, 
making it suitable for API-based tests and microservices 
architectures. Developed with Python and PyTorch and 
optimized on AWS, the model operates efficiently on large 
datasets to produce real-time test scenarios. CodeLLaMa plays 
a crucial role in enhancing software quality and reducing error 
rates.
2.3. LLama3
LLama3 offers innovative artificial intelligence solutions in the 
field of software engineering and test automation [19]. The 
model excels in test scenario generation and coverage 
evaluation. With its extensive language understanding capacity 
and robust code generation capabilities, it creates test scenarios 
with high accuracy in various programming languages. 
Utilizing a vast amount of code and natural language data, 
LLama3 produces reliable test scenarios for complex software, 
prepares comprehensive scenarios for API and integration tests, 
and identifies missing components. These features make test 
processes completer and more reliable.
2.4. GPT-4o
Developed by OpenAI, GPT-4o is an exceptionally successful 
model in the field of natural language processing. Trained on a 
large dataset, this model can solve complex language and code 

problems. GPT-4o offers similar advantages to LLama3 in test 
scenario generation and coverage evaluation. It interprets user 
inputs to produce suitable test scenarios, thoroughly testing 
various use cases of the software. Additionally, it analyzes the 
coverage of the test scenarios it generates, identifying gaps to 
optimize the test processes and enhance software reliability.
In conclusion, the combined use of language models such as 
CodeGemma and CodeLLaMa, specifically tailored for the 
software domain, along with LLama3 and GPT-4o, has the 
potential to revolutionize software testing processes. 
CodeGemma and CodeLLaMa are employed to create and 
evaluate test scenarios, while LLama3 and GPT-4o are utilized 
to evaluate the outputs generated and cross-assessed by 
CodeGemma and CodeLLaMa in the final step. These models, 
with their superior performance in test scenario generation and
coverage evaluation, significantly enhance software quality and 
reliability.

3. Method
We employed CodeGemma and CodeLLaMa to automatically 
generate and evaluate test scenarios for electric vehicles and 
smart energy management systems in the study. These models 
analyze the source code to identify potential and useful test 
scenarios, which are then cross-evaluated for linguistic 
suitability and source code compatibility. Finally, the GPT-4o
and LLaMa3 models perform a thorough assessment, scoring 
the scenarios on a scale of 100 to compare the effectiveness of 
CodeGemma and CodeLLaMa.
CodeGemma is a model developed to identify potential and 
useful test scenarios based on the given source code. The 
model's operation process includes the analysis of the source 
code, the creation of test scenarios, and their evaluation. Both 
CodeGemma and CodeLLaMa follow similar working 
principles by analyzing the source code to identify all possible 
and beneficial test scenarios. These models conduct a 
comprehensive analysis by considering functions, conditions, 
and loops within the code. Test scenarios are generated using 
the "Brute Force Technique" and are produced step-by-step 
logically through the "Chain of Thought" structure. 
CodeLLaMa operates with similar processes but employs 
different algorithms and optimization techniques compared to 
CodeGemma, aiming to create more comprehensive and 
effective scenarios (Figure 1).
After the initial outputs, the test scenarios generated by 
CodeGemma and CodeLLaMa were cross-evaluated for 
linguistic suitability and source code compatibility using the 
prompt: "Evaluate the test scenarios generated by 
CodeGemma/CodeLLaMa. Analyze if they are linguistically 
correct, if the maximum test scenario number is reached, and 
if they are compatible with the source code. If the maximum 
number is not reached, add new test scenarios using the Brute 
Force Technique." The final evaluation by GPT-4o and 
LLaMa3 models used the prompt: "Evaluate the test scenarios 
and give a score out of 100 based on their linguistic 
correctness and compatibility with the source code like X%."

Using the generated and cross-evaluated test scenarios, the 
desired model can generate test code. In this approach, test 
code can be produced by employing a prompt that connects 
the generated test scenarios with the source code [20]. An 
example of such a prompt, which can be used to create test 
code corresponding to these scenarios (Table 2).



Table 2 Test Code Generation Prompt Example

Example Prompt to Create Test Code According to Test 
Scenarios

Generate test code based on the source code and evaluated test 
scenarios, ensuring that the code addresses potential security 
vulnerabilities, performance considerations, and adheres to best 
coding practices. The source code is: {source_code}. Evaluated 
Test Scenarios: {evaluated_test_scenarios}.

Figure 1 Structure Created Using Large Language Models

In the study, Python code was used to generate and evaluate test 
scenarios for electric vehicles and smart energy management 
systems [21]. The code produced route solutions based on a 
distance matrix using XML data and evaluated these solutions 
(Table 3).
The methods and evaluation processes used provided 
significant insights into the generation and optimization of 
automatic test scenarios. The integration of the "Chain of 
Thought" structure enabled more effective generation of test 
scenarios in logical steps, thereby increasing both the quality 
and quantity of the test scenarios.

4. Findings
The Python code used in the study was developed to 
automatically generate and evaluate test scenarios for electric 
vehicles and smart energy management systems. The code 
converts the ALNS solution provided as a string into a list 
structure and calculates the distances by finding each pair of 
elements in the distance matrix. This method is employed to 
optimize energy management and routing processes in electric 
vehicles. The pseudocode structure of the algorithm used is 
shown (Table 3).

Table 3 Pseudocode Structure of the Algorithm Used in 
the Study

1. Take XML data as input.
2. Extract the distance matrix from the 

XML data.
3. Extract the points from the XML data.
4. Initialize the variable string_solution.
5. Convert string_solution into route_lists 

using StringToList(string_solution).
6. Initialize the variable total_distance to 0.
7. For each route in route_lists:
8. For each item in the route:
9. Set the item as left_item.
10. Set the next item as right_item.
11. For each point in points:
12. If point.name equals left_item:
13. Set left_index to int(point.no) - 1.
14. If point.name equals right_item:
15. Set right_index to int(point.no) - 1.
16. End the loop.
17. Retrieve 

distance_matrix[left_index][right_index] 
and add it to total_distance.

18. End the loop.
19. End the loop.
20. Return total_distance.

The code takes a list of solutions and converts it into a Solution 
object, then uses the Brute Force technique to generate all 
possible solutions and calculate their costs. This study aims to 
automatically generate and evaluate test scenarios for electric 
vehicle software using Google's CodeGemma and Meta's 
CodeLLaMa models. Table 4 shows examples of the generated 
test scenarios. You can access the tests and codes created by the 
models on the study's GitHub page [20].

Table 4 Sample Test Scenarios

Model Created Sample Test Scenario
CodeLLaMa Testing different input files: The program takes an 

input file as an argument, which contains the 
information about the problem instance. Testing 



different input files can help identify any bugs or 
issues in the program.

CodeGemma Valid Solution: Test if the given solution is a valid 
route configuration within the problem constraints.

The test scenarios generated by CodeGemma were evaluated 
with a linguistic accuracy rate of 100% and a source code 
compatibility of 95%. Similarly, the test scenarios produced by 
CodeLLaMa showed 100% linguistic accuracy and 90% source 
code compatibility. In the final evaluation by GPT-4o, it was 
noted that the test scenarios were 91% successful in terms of 
linguistic accuracy and source code compatibility. In the 
assessment by LLama3, the overall performance of the test 
scenarios was rated at 92%. Both models provided a wide range 
of scenarios, comprehensively testing different aspects of the 
software, but it was suggested that the inclusion of additional 
scenarios could offer more coverage.
The study compares the performance of test scenarios generated 
by Google's CodeGemma and Meta's CodeLLaMa models in 
terms of linguistic accuracy and source code compatibility. 
CodeGemma's linguistic accuracy rates are generally above 
90%, with the highest performance being 100% in the "Valid 
Solution" scenario. The code compatibility rates for this model 
range from 85% to 95%. Particularly, in the "Valid Solution" 
and "Input Validation" scenarios, a 95% code compatibility rate 
was achieved. CodeGemma significantly enhanced the 
accuracy and validity of test scenarios by demonstrating high 
linguistic accuracy and source code compatibility overall 
(Table 5).

Table 5 Evaluation of the Created Test Scenarios

Test Scenario CodeGem
ma 

Linguistic 
Accuracy 

(%)

CodeGemma 
Code 

Compatibilit
y (%)

CodeLLaMa
Linguistic 

Accuracy (%)

CodeLLaMa 
Code 

Compatibilit
y (%)

Valid Solution 100 95 100 90

Route Length 
Validation

95 90 95 85

Customer 
Coverage

95 90 90 85

Charging 
Station Usage

90 85 85 80

Route 
Optimization

95 95 90 85

Solution 
Uniqueness

95 90 90 80

Error Handling 90 85 85 80

Performance 
Optimization

90 85 85 80

Input 
Validation

95 95 90 85

Coverage of All 
Customers

95 90 90 85

The linguistic accuracy rates of the CodeLLaMa model range 
from 85% to 100%, with the highest performance achieved at 
100% in the "Valid Solution" scenario. The code compatibility 
rates of this model vary between 80% and 90%. Specifically, a 
90% code compatibility was achieved in the "Valid Solution" 
and "Route Length Verification" scenarios (Figure 2). 

Figure 2 Performance Comparison of CodeGemma and 
CodeLLaMa Models

Although CodeLLaMa has provided satisfactory results in 
terms of linguistic accuracy and code compatibility, it has 
demonstrated lower performance compared to CodeGemma. 
These findings indicate that while CodeGemma achieves higher 
accuracy and compatibility in test scenario generation, both 
models have the potential to enhance the testing processes of 
electric vehicle software.

5. Conclusion
The complex and extensive codebases of electric vehicle 
software make manual test scenario generation time-consuming 
and costly. In our study, we examined how large language 
models accelerate this process and improve its quality, aiming 
to generate automatic test scenarios for electric vehicle software 
using Google's CodeGemma and Meta's CodeLLaMa models, 
and to evaluate the results by cross-checking them with 
OpenAI's GPT-4o and Meta's LLaMa3 models. The results 
demonstrate that by interpreting different codes in various 
ways, the CodeGemma and CodeLLaMa models enhance the 
quality and reliability of test scenarios with high accuracy and 
compatibility. This study shows that large language models 
improve software testing processes, providing significant time 
and cost savings by accelerating operations that are manually 
performed, thus contributing substantially to software 
development processes. Furthermore, due to the importance of 
software used in safety-critical electric vehicles and smart 
energy management, this study addresses the robustness of 
routing software in these systems by generating and verifying 
various test scenarios, highlighting the critical importance of 
testing such software. These findings confirm that large 
language models have vast potential in the fields of software 
engineering and test automation.
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