
Büyük Dil Modelleri ile Elektrikli Araç Yazılım Test Senaryolarının
Otomatik Üretimi ve Değerlendirmesi

Automated Generation and Evaluation of Electrical Vehicles Software
Test Scenarios Using Large Language Models

Cem BAĞLUM1, Uğur YAYAN2, Ahmet YAZICI3

1Bilgisayar Mühendisliği Bölümü
Eskişehir Osmangazi Üniversitesi, Eskişehir

cembglm@gmail.com

2Yazılım Mühendisliği Bölümü
Eskişehir Osmangazi Üniversitesi, Eskişehir

ugur.yayan@ogu.edu.tr

3Bilgisayar Mühendisliği Bölümü
Eskişehir Osmangazi Üniversitesi, Eskişehir

ayazici@ogu.edu.tr

Özetçe
Elektrikli araçlarda akıllı enerji yönetim sistemleri büyük önem
taşır; bu sistemlerin yüksek oranda yazılım içermesi ve
yazılımların gürbüzlüklerinin emniyet açısından kritik olması
nedeniyle yoğun bir şekilde test edilmeleri gerekmektedir. Bu
nedenle, yazılımların gürbüzlüklerin test edilmesi için test
senaryoları üretilmesi gerekmektedir. Bu çalışma, Google'ın
CodeGemma ve Meta'nın CodeLLaMa büyük dil modellerinin
elektrikli araç yazılımları için test senaryoları üretme
yeteneklerini incelemektedir. CodeGemma, kod tamamlama ve
doğal dil anlama gibi görevlerde üstün performans gösterirken,
CodeLLaMa kod üretimi ve hata tespitinde uzmanlaşmıştır. Her
iki model, elektrikli araç yazılımlarına ait aynı kaynak kodlarla
maksimum sayıda test senaryosu üretmiş ve performansları dil
bilgisi ve kaynak kod uyumluluğu açısından çapraz
değerlendirme ile incelenmiştir. Sonuçlar, GPT-4o ve LLaMa3
modelleri ile puanlanarak analiz edilmiştir. Çalışmanın amacı,
test senaryolarının kalitesini artırarak elektrikli araçlarda
bulunan akıllı enerji yönetim sistemlerindeki yazılım test
süreçlerini iyileştirmektir. Bulgular, dil modellerinin,
gerçekleştirilen test süreçlerinde verimliliği artırmada önemli
bir rol oynayabileceğini göstermektedir.

Abstract
Intelligent energy management systems in electric vehicles are
of great importance; these systems heavily rely on software, and
the robustness of these software components is critical for
safety, necessitating extensive testing. Therefore, it is essential
to generate test scenarios to assess the robustness of the
software. This study examines the capabilities of Google's
CodeGemma and Meta's CodeLLaMa large language models in
generating test scenarios for electric vehicle software.
CodeGemma excels in tasks such as code completion and
natural language understanding, while CodeLLaMa specializes
in code generation and error detection. Both models generated
the maximum number of test scenarios from the same source

code of electric vehicle software, and their performance was
evaluated through cross-assessment for linguistic accuracy and
code compatibility. The results were analyzed using GPT-4o
and LLaMa3 models. Test scenarios are created and evaluated
using CodeGemma and CodeLLaMa. The aim of this study is
to enhance the quality of test scenarios and improve the
software testing processes in intelligent energy management
systems in electric vehicles. The findings suggest that language
models can play a significant role in increasing efficiency in the
testing processes.

1. Introduction
Smart energy management systems in electric vehicles are
highly important, and these systems incorporate a significant
amount of software; due to the critical nature of the robustness
of these software systems for safety, they must undergo
rigorous testing. The automatic generation of test scenarios for
electric vehicle software is crucial for enhancing software
quality and accelerating development processes. Test scenarios
are utilized to validate the expected behaviors of the software,
detect potential errors, and increase the software's reliability.
The use of large language models for generating test scenarios
is shown in our study and the literature to have a positive impact
on efficiency and effectiveness in software testing processes.
In this study, the test scenario generation capabilities of two
different large language models, CodeGemma developed by
Google and CodeLLaMa developed by Meta, for electric
vehicle software are examined [1,2]. CodeGemma is built on
Google's Gemma models and demonstrates superior
performance in tasks such as code completion, natural language
understanding, and mathematical reasoning [3]. CodeLLaMa,
on the other hand, is built on Meta's LLaMa2, trained on
extensive datasets, and specialized in areas like code
generation, error detection, and optimization [4]. Both models
were provided with the same source code and commands
related to electric vehicle software and were asked to generate

as many test scenarios as possible. Their performance was
evaluated in terms of linguistic quality and compatibility with
the source code. The main goal of the study is to improve
software testing processes by enhancing the quality of the test
scenarios produced by these models. The findings of the study
indicate that language models can play a significant role in
generating test scenarios.
Previous studies have shown that the integration of artificial
intelligence technologies into software testing processes offers
significant advantages in terms of accelerating these processes
and enhancing their efficiency. Jaber et al. investigated the
automatic generation of test scenarios using artificial
intelligence and machine learning [5]. Li et al. discussed the
role of artificial intelligence in test automation and its
contributions to software testing processes [6]. Large language
models, in particular, stand out as effective tools for the
automatic generation of software test scenarios. Yang et al.
introduced Text2Reaction, a large language model-based
framework that enables robots to respond to environmental
changes [7]. Ionescu and Enescu explored how ChatGPT can
be used in the processes of creating and evaluating online tests
[8]. Studies on the capabilities of large language models to
detect and correct errors in Python programs demonstrate their
effectiveness. Wuisang et al. evaluated ChatGPT's performance
in automatic error detection and correction using the QuixBugs
benchmark set [9].
Studies have shown that large language models can be
successfully used in tasks that are more verbal in nature, such
as the generation of test scenarios. Schafer et al. presented a
comparative analysis of large language model-based test
generation techniques versus traditional methods [10]. Lee and
Hsiang examined the use of the BERT model in patent
classification tasks [11]. Wei et al. evaluated the performance
of the DistilBERT model in reviewing legal documents [12].
Automatic test data generation is an important method for
increasing code coverage in software. Avdeenko and
Serdyukov proposed an approach aimed at generating test data
using genetic algorithms [13]. Studies on the effectiveness of
completing software test scenarios using control flow graphs
play a significant role in increasing test coverage. Zhang et al.
presented coverage measurement methods for equipment
software system testing [14]. Additionally, Caglar et al.
discussed how cloud-based platforms like ChArIoT can
improve software testing processes [15]. ISTA has been
developed as a tool supporting various coverage criteria for
deep neural networks. Zheng et al. examined the impact of this
tool on test case generation and optimization [16].
This study, which aims to enhance the efficiency and accuracy
of artificial intelligence techniques used in generating test
scenarios, we go beyond existing methods in the generation and
evaluation of test scenarios for electric vehicle software. It has
been demonstrated that automatic test scenario generation using
language models offers significant forward-looking findings in
the fields of software engineering and test automation. A
comprehensive methodology was followed to examine the
effectiveness of using language models in generating and
evaluating test scenarios for electric vehicle software. The test
scenario generation capabilities of CodeGemma, developed by
Google, and CodeLLaMa, developed by Meta, were compared
for electric vehicle software. At the initial stage of the study,
both models were provided with the same source codes and
commands to generate the maximum number of test scenarios.
The generated test scenarios were evaluated based on criteria

such as linguistic accuracy, adherence to grammatical rules, and
compatibility with the source code. During this process, the
models performed a cross-check by analyzing each other's
generated scenarios. Where necessary, additions were made to
enhance the quality of the test scenarios, and in the final step,
the test scenarios were scored using the GPT-4o and LLaMa3
models to evaluate their overall performance. The findings
revealed that both CodeGemma and CodeLLaMa models
achieved high accuracy and compatibility in generating test
scenarios. However, CodeGemma generally exhibited superior
performance. It was determined that both models have the
potential to improve the testing processes of electric vehicle
software. These results indicate that large language models can
make significant contributions to the fields of software
engineering and test automation, playing a critical role in
increasing efficiency and effectiveness beyond existing
methods.
In the subsequent sections of the study, the details of the
CodeGemma and CodeLLaMa models, as well as the software
and hardware components used, will be elaborated upon. The
third section will detail the proposed method and the command
engineering techniques used, explaining the procedures
undertaken to generate the maximum number of test scenarios.
Finally, in the fourth section, the test scenarios generated by the
models will be compared in terms of linguistic and source code
compatibility, and the results will be evaluated.

2. Large Language Models Used in the
Study

The increasing importance of artificial intelligence
technologies in software engineering processes necessitates the
use of these technologies for the automatic generation of test
scenarios for electric vehicle software. The capabilities of
CodeGemma, CodeLLaMa, LLaMa3, and GPT-4o models in
generating and evaluating test scenarios for electric vehicle
software using large language models are examined in detail
(Table 1).

Table 1 Details of Large Language Models Used in the
Study

Features CodeGemma CodeLLaMa GPT-4o LLaMa3

Developer Google Meta OpenAI Meta
Training

Data
500 billion

tokens
(code and
English

data)

Extensive
code and
data sets

Text,
audio,

and
image
data

Extensiv
e

languag
e and
code
data

Core
Capabilities

Code
completion,

code
generation,

natural
language

understandi
ng,

mathematic
al

reasoning

Code
generation

, error
detection,
optimizati

on

Text,
audio,

and
image

processin
g

Code
generati
on, test
scenario
generati

on

Multilingua
l Support

Python,
JavaScript,

Java,
Kotlin,

Python,
JavaScript
, Java, C#,

Python,
Java,

C++, C#,
JavaScrip

Python,
Java,
C++,
C#,

C++, C#,
Rust, Go

C++, Go,
Kotlin

t, Go,
Rust,
Swift,
PHP,
Ruby,

HTML/C
SS

JavaScri
pt

Performanc
e

Evaluation

High
accuracy

and
compatibilit
y, suitable
for electric

vehicle
software

Superior
in API and
microservi
ce testing,
compatibl

e with
electric
vehicle

software

High-
speed

and low-
cost

multimod
al data

processin
g,

suitable
for

electric
vehicle

software

Extensiv
e test

scenario
generati

on,
optimize

d for
electric
vehicle

software

2.1. CodeGemma
Developed by Google, CodeGemma is a high-performance
model in the fields of code completion and generation, trained
on 500 billion code tokens. Available in 2B and 7B parameter
sizes, the model is effective in generating complex test
scenarios thanks to its natural language processing and
mathematical reasoning capabilities. CodeGemma, which
produces strong and consistent outputs with the "Fill-in-the-
Middle (FIM)" training approach, offers advantages in real-
time software development projects with low latency. These
capabilities accelerate testing processes, enabling the early
detection of software bugs.
2.2. CodeLLaMa
Developed by Meta, CodeLLaMa is a large language model
with extensive code and language comprehension capabilities.
The model, which can generate complex test scenarios with its
advanced natural language processing abilities, contributes to
software development and test automation processes.
CodeLLaMa can create test scenarios with high accuracy in
various programming languages and software frameworks,
making it suitable for API-based tests and microservices
architectures. Developed with Python and PyTorch and
optimized on AWS, the model operates efficiently on large
datasets to produce real-time test scenarios. CodeLLaMa plays
a crucial role in enhancing software quality and reducing error
rates.
2.3. LLama3
LLama3 offers innovative artificial intelligence solutions in the
field of software engineering and test automation [19]. The
model excels in test scenario generation and coverage
evaluation. With its extensive language understanding capacity
and robust code generation capabilities, it creates test scenarios
with high accuracy in various programming languages.
Utilizing a vast amount of code and natural language data,
LLama3 produces reliable test scenarios for complex software,
prepares comprehensive scenarios for API and integration tests,
and identifies missing components. These features make test
processes completer and more reliable.
2.4. GPT-4o
Developed by OpenAI, GPT-4o is an exceptionally successful
model in the field of natural language processing. Trained on a
large dataset, this model can solve complex language and code

problems. GPT-4o offers similar advantages to LLama3 in test
scenario generation and coverage evaluation. It interprets user
inputs to produce suitable test scenarios, thoroughly testing
various use cases of the software. Additionally, it analyzes the
coverage of the test scenarios it generates, identifying gaps to
optimize the test processes and enhance software reliability.
In conclusion, the combined use of language models such as
CodeGemma and CodeLLaMa, specifically tailored for the
software domain, along with LLama3 and GPT-4o, has the
potential to revolutionize software testing processes.
CodeGemma and CodeLLaMa are employed to create and
evaluate test scenarios, while LLama3 and GPT-4o are utilized
to evaluate the outputs generated and cross-assessed by
CodeGemma and CodeLLaMa in the final step. These models,
with their superior performance in test scenario generation and
coverage evaluation, significantly enhance software quality and
reliability.

3. Method
We employed CodeGemma and CodeLLaMa to automatically
generate and evaluate test scenarios for electric vehicles and
smart energy management systems in the study. These models
analyze the source code to identify potential and useful test
scenarios, which are then cross-evaluated for linguistic
suitability and source code compatibility. Finally, the GPT-4o
and LLaMa3 models perform a thorough assessment, scoring
the scenarios on a scale of 100 to compare the effectiveness of
CodeGemma and CodeLLaMa.
CodeGemma is a model developed to identify potential and
useful test scenarios based on the given source code. The
model's operation process includes the analysis of the source
code, the creation of test scenarios, and their evaluation. Both
CodeGemma and CodeLLaMa follow similar working
principles by analyzing the source code to identify all possible
and beneficial test scenarios. These models conduct a
comprehensive analysis by considering functions, conditions,
and loops within the code. Test scenarios are generated using
the "Brute Force Technique" and are produced step-by-step
logically through the "Chain of Thought" structure.
CodeLLaMa operates with similar processes but employs
different algorithms and optimization techniques compared to
CodeGemma, aiming to create more comprehensive and
effective scenarios (Figure 1).
After the initial outputs, the test scenarios generated by
CodeGemma and CodeLLaMa were cross-evaluated for
linguistic suitability and source code compatibility using the
prompt: "Evaluate the test scenarios generated by
CodeGemma/CodeLLaMa. Analyze if they are linguistically
correct, if the maximum test scenario number is reached, and
if they are compatible with the source code. If the maximum
number is not reached, add new test scenarios using the Brute
Force Technique." The final evaluation by GPT-4o and
LLaMa3 models used the prompt: "Evaluate the test scenarios
and give a score out of 100 based on their linguistic
correctness and compatibility with the source code like X%."

Using the generated and cross-evaluated test scenarios, the
desired model can generate test code. In this approach, test
code can be produced by employing a prompt that connects
the generated test scenarios with the source code [20]. An
example of such a prompt, which can be used to create test
code corresponding to these scenarios (Table 2).

Table 2 Test Code Generation Prompt Example

Example Prompt to Create Test Code According to Test
Scenarios

Generate test code based on the source code and evaluated test
scenarios, ensuring that the code addresses potential security
vulnerabilities, performance considerations, and adheres to best
coding practices. The source code is: {source_code}. Evaluated
Test Scenarios: {evaluated_test_scenarios}.

Figure 1 Structure Created Using Large Language Models

In the study, Python code was used to generate and evaluate test
scenarios for electric vehicles and smart energy management
systems [21]. The code produced route solutions based on a
distance matrix using XML data and evaluated these solutions
(Table 3).
The methods and evaluation processes used provided
significant insights into the generation and optimization of
automatic test scenarios. The integration of the "Chain of
Thought" structure enabled more effective generation of test
scenarios in logical steps, thereby increasing both the quality
and quantity of the test scenarios.

4. Findings
The Python code used in the study was developed to
automatically generate and evaluate test scenarios for electric
vehicles and smart energy management systems. The code
converts the ALNS solution provided as a string into a list
structure and calculates the distances by finding each pair of
elements in the distance matrix. This method is employed to
optimize energy management and routing processes in electric
vehicles. The pseudocode structure of the algorithm used is
shown (Table 3).

Table 3 Pseudocode Structure of the Algorithm Used in
the Study

1. Take XML data as input.
2. Extract the distance matrix from the

XML data.
3. Extract the points from the XML data.
4. Initialize the variable string_solution.
5. Convert string_solution into route_lists

using StringToList(string_solution).
6. Initialize the variable total_distance to 0.
7. For each route in route_lists:
8. For each item in the route:
9. Set the item as left_item.
10. Set the next item as right_item.
11. For each point in points:
12. If point.name equals left_item:
13. Set left_index to int(point.no) - 1.
14. If point.name equals right_item:
15. Set right_index to int(point.no) - 1.
16. End the loop.
17. Retrieve

distance_matrix[left_index][right_index]
and add it to total_distance.

18. End the loop.
19. End the loop.
20. Return total_distance.

The code takes a list of solutions and converts it into a Solution
object, then uses the Brute Force technique to generate all
possible solutions and calculate their costs. This study aims to
automatically generate and evaluate test scenarios for electric
vehicle software using Google's CodeGemma and Meta's
CodeLLaMa models. Table 4 shows examples of the generated
test scenarios. You can access the tests and codes created by the
models on the study's GitHub page [20].

Table 4 Sample Test Scenarios

Model Created Sample Test Scenario
CodeLLaMa Testing different input files: The program takes an

input file as an argument, which contains the
information about the problem instance. Testing

different input files can help identify any bugs or
issues in the program.

CodeGemma Valid Solution: Test if the given solution is a valid
route configuration within the problem constraints.

The test scenarios generated by CodeGemma were evaluated
with a linguistic accuracy rate of 100% and a source code
compatibility of 95%. Similarly, the test scenarios produced by
CodeLLaMa showed 100% linguistic accuracy and 90% source
code compatibility. In the final evaluation by GPT-4o, it was
noted that the test scenarios were 91% successful in terms of
linguistic accuracy and source code compatibility. In the
assessment by LLama3, the overall performance of the test
scenarios was rated at 92%. Both models provided a wide range
of scenarios, comprehensively testing different aspects of the
software, but it was suggested that the inclusion of additional
scenarios could offer more coverage.
The study compares the performance of test scenarios generated
by Google's CodeGemma and Meta's CodeLLaMa models in
terms of linguistic accuracy and source code compatibility.
CodeGemma's linguistic accuracy rates are generally above
90%, with the highest performance being 100% in the "Valid
Solution" scenario. The code compatibility rates for this model
range from 85% to 95%. Particularly, in the "Valid Solution"
and "Input Validation" scenarios, a 95% code compatibility rate
was achieved. CodeGemma significantly enhanced the
accuracy and validity of test scenarios by demonstrating high
linguistic accuracy and source code compatibility overall
(Table 5).

Table 5 Evaluation of the Created Test Scenarios

Test Scenario CodeGem
ma

Linguistic
Accuracy

(%)

CodeGemma
Code

Compatibilit
y (%)

CodeLLaMa
Linguistic

Accuracy (%)

CodeLLaMa
Code

Compatibilit
y (%)

Valid Solution 100 95 100 90

Route Length
Validation

95 90 95 85

Customer
Coverage

95 90 90 85

Charging
Station Usage

90 85 85 80

Route
Optimization

95 95 90 85

Solution
Uniqueness

95 90 90 80

Error Handling 90 85 85 80

Performance
Optimization

90 85 85 80

Input
Validation

95 95 90 85

Coverage of All
Customers

95 90 90 85

The linguistic accuracy rates of the CodeLLaMa model range
from 85% to 100%, with the highest performance achieved at
100% in the "Valid Solution" scenario. The code compatibility
rates of this model vary between 80% and 90%. Specifically, a
90% code compatibility was achieved in the "Valid Solution"
and "Route Length Verification" scenarios (Figure 2).

Figure 2 Performance Comparison of CodeGemma and
CodeLLaMa Models

Although CodeLLaMa has provided satisfactory results in
terms of linguistic accuracy and code compatibility, it has
demonstrated lower performance compared to CodeGemma.
These findings indicate that while CodeGemma achieves higher
accuracy and compatibility in test scenario generation, both
models have the potential to enhance the testing processes of
electric vehicle software.

5. Conclusion
The complex and extensive codebases of electric vehicle
software make manual test scenario generation time-consuming
and costly. In our study, we examined how large language
models accelerate this process and improve its quality, aiming
to generate automatic test scenarios for electric vehicle software
using Google's CodeGemma and Meta's CodeLLaMa models,
and to evaluate the results by cross-checking them with
OpenAI's GPT-4o and Meta's LLaMa3 models. The results
demonstrate that by interpreting different codes in various
ways, the CodeGemma and CodeLLaMa models enhance the
quality and reliability of test scenarios with high accuracy and
compatibility. This study shows that large language models
improve software testing processes, providing significant time
and cost savings by accelerating operations that are manually
performed, thus contributing substantially to software
development processes. Furthermore, due to the importance of
software used in safety-critical electric vehicles and smart
energy management, this study addresses the robustness of
routing software in these systems by generating and verifying
various test scenarios, highlighting the critical importance of
testing such software. These findings confirm that large
language models have vast potential in the fields of software
engineering and test automation.

Acknowledgement
This work is supported by the Scientific and Technical
Research Council of Turkey (TUBITAK), Contract No
222N269, project title: “OPEVA: Optimization of Electric
Vehicle Autonomy”.

This paper is supported by the OPEVA project that has received
funding within the Key Digital Technologies Joint Undertaking
(KDT JU) from the European Union’s Horizon Europe
Programme and the National Authorities (France, Belgium,
Czechia, Italy, Portugal, Turkey, Switzerland), under grant
agreement 101097267.
Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the
European Union or KDT JU. Neither the European Union nor
the granting authority can be held responsible for them.

References
[1] Google Developers, "CodeGemma Documentation,"
https://ai.google.dev/gemma/docs/codegemma. (2024).
[2] Meta, "Code Llama: A Large Language Model for
Coding," https://ai.meta.com/blog/code-llama-large-language-
model-coding/. (2024).
[3] Google, "Gemma Open Models,"
https://blog.google/technology/developers/gemma-open-
models/. (2024).
[4] Meta, "LLaMA 2," https://llama.meta.com/llama2/.
(2024).
[5] K. M. Jaber, Institute of Electrical and Electronics
Engineers. Jordan Section, Institute of Electrical and
Electronics Engineers. Region 8, and Institute of Electrical and
Electronics Engineers, 2019 IEEE Jordan International Joint
Conference on Electrical Engineering and Information
Technology (JEEIT) : proceedings : April 9-11, 2019, Le Royal
Amman Hotel, Jordan.
[6] J. J. Li, A. Ulrich, X. Bai, and A. Bertolino,
“Advances in test automation for software with special focus on
artificial intelligence and machine learning,” Software Quality
Journal, vol. 28, no. 1. Springer, pp. 245–248, Mar. 01, 2020.
doi: 10.1007/s11219-019-09472-3.
[7] Z. Yang et al., “Text2Reaction : Enabling Reactive
Task Planning Using Large Language Models,” IEEE Robot
Autom Lett, May 2024, doi: 10.1109/LRA.2024.3371223.
[8] V. M. Ionescu and M. C. Enescu, “Using ChatGPT
for Generating and Evaluating Online Tests,” in 15th
International Conference on Electronics, Computers and
Artificial Intelligence, ECAI 2023 - Proceedings, Institute of
Electrical and Electronics Engineers Inc., 2023. doi:
10.1109/ECAI58194.2023.10193995.
[9] M. C. Wuisang, M. Kurniawan, K. A. Wira Santosa,
A. Agung Santoso Gunawan, and K. E. Saputra, “An
Evaluation of the Effectiveness of OpenAI’s ChatGPT for
Automated Python Program Bug Fixing using QuixBugs,” in
2023 International Seminar on Application for Technology of
Information and Communication: Smart Technology Based on
Industry 4.0: A New Way of Recovery from Global Pandemic
and Global Economic Crisis, iSemantic 2023, Institute of
Electrical and Electronics Engineers Inc., 2023, pp. 295–300.
doi: 10.1109/iSemantic59612.2023.10295323.
[10] M. Schafer, S. Nadi, A. Eghbali, and F. Tip, “An
Empirical Evaluation of Using Large Language Models for
Automated Unit Test Generation,” IEEE Transactions on
Software Engineering, vol. 50, no. 1, pp. 85–105, Jan. 2024,
doi: 10.1109/TSE.2023.3334955.

[11] J. S. Lee and J. Hsiang, “Patent classification by fine-
tuning BERT language model,” World Patent Information, vol.
61, Jun. 2020, doi: 10.1016/j.wpi.2020.101965.
[12] F. Wei et al., “Empirical Study of LLM Fine-Tuning
for Text Classification in Legal Document Review,” in
Proceedings - 2023 IEEE International Conference on Big Data,
BigData 2023, Institute of Electrical and Electronics Engineers
Inc., 2023, pp. 2786–2792. doi:
10.1109/BigData59044.2023.10386911.
[13] T. Avdeenko and K. Serdyukov, “Automated test
data generation based on a genetic algorithm with maximum
code coverage and population diversity,” Applied Sciences
(Switzerland), vol. 11, no. 10, May 2021, doi:
10.3390/app11104673.
[14] J. Zhang, Y. Peng, and H. Yang, “A Test Design and
Coverage Measurement Method for Equipment Software
System Testing,” in IEEE Joint International Information
Technology and Artificial Intelligence Conference (ITAIC),
Institute of Electrical and Electronics Engineers Inc., 2022, pp.
720–730. doi: 10.1109/ITAIC54216.2022.9836534.
[15] O. Caglar, F. Taskin, C. Baglum, S. Asik, and U.
Yayan, “Development of Cloud and Artificial Intelligence
based Software Testing Platform (ChArIoT),” in 2023
Innovations in Intelligent Systems and Applications
Conference, ASYU 2023, Institute of Electrical and Electronics
Engineers Inc., 2023. doi:
10.1109/ASYU58738.2023.10296551.
[16] W. Zheng et al., “ISTA: Automatic Test Case
Generation and Optimization for Intelligent Systems based on
Coverage Analysis,” in Proceedings - 2023 IEEE International
Conference on Software Analysis, Evolution and
Reengineering, SANER 2023, Institute of Electrical and
Electronics Engineers Inc., 2023, pp. 758–762. doi:
10.1109/SANER56733.2023.00086.
[17] PyTorch, "PyTorch," https://pytorch.org/. (2024).
[18] Amazon Web Services, "Amazon Web Services,"
https://aws.amazon.com. (2024).
[19] Meta, "LLaMA 3," https://llama.meta.com/llama3/.
(2024).
[20] GitHub, “EV-Software-Test-Scenarios-LLM”, 2024.
https://github.com/ESOGU-SRLAB/EV-Software-Test-
Scenarios-LLM (2024)
[21] GitHub, "Array to Solution", 2024.
https://github.com/ESOGU-SRLAB/EV-Software-Test-
Scenarios-LLM/blob/main/src/test_file/array_to_solution.py.

