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Özetçe
Son yıllarda karbon emisyon hedeflerini dikkate alan Elektrikli 
Araç Rotalama Problemleri yoğun ilgi görmektedir. Özellikle 
lojistik ve taşımacılıkta yakıt tüketiminin azaltılması ve karbon 
salınımının düşürülmesi amaçlanmaktadır. Bu bakımdan son 
yıllarda elektrikli araç kullanımı artmaktadır. Lojistikte elektrikli 
araç kullanımı beraberinde batarya kapasitesi ve şarj süresi gibi 
konuları dikkate almayı gerektirmektedir. Elektrikli araç 
rotalama problemleri bu doğrultuda NP-Zor problemlerdir. Bu 
nedenle kısa sürede kaliteli çözümler üreten meta-sezgisel 
algoritmalara başvurulmaktadır. Bu çalışmada Kapasiteli 
Elektrikli Araçlarda Rotalama Problemi (CEVRP) için hibrit 
Uyarlanabilir Geniş Komşuluk Arama (ALNS) algoritması 
kullanılmıştır. ALNS her adımda yeni çözümleri operatörleri ile 
üretip, bu çözümleri değerlendiren ve başarılı olan operatörlerin 
seçilme olasılığının arttırıldığı uyarlanabilir bir algoritma olması 
nedeni ile seçilmiştir. Ayrıca, çözüm uzayını daha hızlı taramak 
için yerel arama yöntemleri algoritmaya dâhil edilmiştir. Üç 
farklı yöntem oluşturularak ESOGÜ kampüs haritasından 
oluşturulan müşteri talep noktaları için sonuçlar incelenmiştir. 
Bu yöntemlerin sonuçlara olan etkisi analiz edilmiş ve yerel 
arama yöntemlerinin rastgele seçilen ve talep noktası fazla olan 
problemlerde iyi sonuçlar elde ettiği gösterilmiştir.

Abstract
In recent years, Electric Vehicle Routing Problems considering 
carbon emission targets has received extensive attention. 
Particularly in logistics and transportation, the aim is to reduce 
fuel consumption and lower carbon emissions. In this regard, the 
use of electric vehicles has increased in recent years. Using 
electric vehicles in logistics necessitates considerations such as 
battery capacity and charging times. Electric vehicle routing 
problems are NP-hard problems in this context. Therefore, 

metaheuristic algorithms that can produce high-quality solutions 
faster are employed. In this study, the Hybrid Adaptive Large 
Neighborhood Search (ALNS) algorithm is used for the 
Capacitated Electric Vehicle Routing Problem (CEVRP). ALNS 
is chosen for its adaptive nature, generating new solutions at 
each step using operators, evaluating these solutions, and 
increasing the likelihood of selecting successful operators. 
Additionally, local search methods are integrated into the 
algorithm to explore the solution space faster. Results show that
local search methods are included in the algorithm to scan the 
solution space faster. Three methods are compared to obtain 
effective scanning of the solution space.in the ESOGU campus 
map. The effects of these methods on the results are analysed, 
and it is shown that local search methods achieve good results 
for randomly selected problems with more demand points.

1. Introduction
Carbon emissions from the transportation industry account for 
15% of global carbon emissions, and its average annual growth 
rate has been above 5% in past years [1]. With the proliferation 
of electric vehicles, energy efficiency and sustainability 
concepts have emerged. The increasing use of electric vehicles 
in logistics and transportation is critical in improving efficiency 
and reducing carbon emissions [2]. Capacitated Electric Vehicle 
Routing Problem (CEVRP) is a delivery problem where the 
capacitated vehicle should visit customers or charging stations 
within a route, starting and ending at a depot. Electric vehicles 
bring challenges such as battery capacity and charging, leading 
to high computational costs in solving routing problems. 
Metaheuristic algorithms are widely used in this field because 
methods that provide exact solutions cannot provide solutions in 
a short time for large-scale problems. ALNS is one of the 
methods recommended in the literature for solving EVRPs. In 



the literature, the study by Ropke and Pisinger (2006) is the first 
to introduce the ALNS algorithm for the Vehicle Routing 
Problem with Time Windows, demonstrating relatively better 
results [3]. Demir et al. (2014) focused on energy consumption 
and carbon emissions, examining the performance impacts of 
different charging strategies and approaches [4]. Schneider et al. 
(2014) compared metaheuristic methods in their study, 
highlighting the high performance of the ALNS algorithm [5]. 
Keskin and Çatay (2016) addressed the time window problem 
for partial charging strategies, updating weights in each iteration 
with the ALNS algorithm. [6]. Erdelić and Carić (2019)
expanded the search space using local search methods within the 
ALNS framework [7, 8]. Erdem and Koç (2019) applied the 
ALNS method to a different context, the home healthcare 
problem for nurses and patients, working with three charging 
strategies and proposed operators [9]. Bac and Erdem (2021) 
addressed the home healthcare problem during the COVID-19 
pandemic using local search methods and ALNS. They studied 
using private and public charging stations based on map data 
from Samsun, showing that private charging stations could be 
used despite the cost [10]. Mara et al. (2022) created a review 
that included studies in the literature on ALNS and 
systematically examined different methods in this review. [11].
This study uses the Hybrid Adaptive Large Neighborhood 
Search (ALNS) algorithm to solve CEVRP for minimizing the 
total distance. The problem data is generated using the ESOGU 
campus map. The fact that the study is conducted with a real 
environment data has contributed to the literature in this field.
Furthermore, the full charging strategy is considered, and 
operators that explore the solution space faster are included to 
improve the solution quality. With these operators, the ALNS 
algorithm is extended with swap and local search methods, and 
their performances are compared. The route obtained from the 
algorithm is repaired considering the charging capacity.
Charging stations are added to the required locations using the 
proposed repair method. The effect of operators and local search 
algorithms in ALNS is analyzed considering the solution time 
and quality. 
The remainder of this paper is as follows: The second section 
includes the problem definition and constraints. The third section 
presents the general framework of the ALNS algorithm as the 
method, including the initial solution, operators used, acceptance 
criteria, and the method itself. The fourth section discusses the 
study environment, interprets the algorithm's results according 
to the methods used, and suggests future research directions. 

2. Problem Definition.

The vehicle routing problem (VRP) is an optimization problem 
that aims to determine the lowest-cost delivery routes from a 
warehouse to a geographically dispersed set of customers. With 
the rise of electric vehicles, many logistics companies have 
considered using Electric Vehicles (EVs) in their vehicle fleets 
to reduce greenhouse gas emissions and lower fees per gram of 
emissions/km. Due to environmental concerns, EVs have been 
employed for last-mile deliveries in several places. EVs have 
advantages such as cheap transportation costs, energy efficiency, 
and lower emissions of pollutants. EVs are powered by 
rechargeable batteries. However, EV application faces 
significant difficulties, such as poor battery energy density, 
inadequate electric charging and battery switch stations, and 
longer recharging times. To prevent pointless diversions, route 
planning should include factors such as limited cruising range, 

lengthy recharge times, and a lack of recharging facilities. These 
restrictions add to the complexity and difficulty of the EV route 
optimization challenge. EVRP studies include various features 
and constraints. The Capacitated EVRP (CEVRP) is a VRP 
based on EV’s with limited carrying capacity. Objects have a 
quantity, such as weight or volume, and vehicles have a 
maximum capacity they can carry. The basic assumptions of the 
CEVRP are as follows: 
1. Each route starts and ends at the depot node.
2. All vehicles in the fleet leave the depot with a full charge
3. The time required for a full charge is known.
4. Each customer node will be serviced by exactly one electric 

vehicle.
5. Multiple packages can be delivered to a customer.
6. The load-carrying capacity of the vehicle cannot be 

exceeded.
7. Electric vehicles can visit a charging station between two 

customers.
8. Each charging station can be visited by more than one 

electric vehicle.
9. The locations of the charging stations and the travel 

distance from any node to any charging station are known.

In this study, problem sets with 5, 10, 20, 40, and 60 customers, 
categorized as Clustered (C), random (R), and randomly 
clustered (RC), are used on the Osmangazi University campus. 
The shortest distances between all nodes representing customers 
and charging stations are obtained using the Dijkstra algorithm. 
The problem is represented by a graph in Equation 1.

(1)
Here, V is the nodes representing the depot, customers, and 
stations, while E is the edges representing the roads. 

3. Hybrid ALNS Algorithm
To tackle challenges such as battery capacity, payload capacity, 
and charging times in the CEVRP problem and to obtain high-
quality solutions within short computation times, the ALNS 
algorithm is proposed [3].
The ALNS algorithm consists of specific steps and components. 
First, an initial solution is determined, which is expanded by 
applying certain destruction and repair operators. A new 
solution is obtained in each iteration. The new solution is 
evaluated against the previous solution.  S is the current 
solution, is the new solution and  is the best solution. 
The steps of the ALNS algorithm are summarized as follows:
1. Creating the initial solution.
2. Generating new solutions using operators.
3. Producing neighbor solutions using Local Search.
4. Evaluating new solutions and accepting them with the 

Simulated Annealing (SA) acceptance criterion.
5. If the stopping criterion has not been reached, go back 

to step 2.
In the proposed Hybrid ALNS algorithm, LS operators and SA 
acceptance criteria have been integrated into the ALNS to 
improve the solution quality.

3.1. Initial Solution

Proper creation of the initial solution can effectively converge 
to a good solution. However, it can also be generated completely 
randomly [11]. In this study, the initial solution considers the 
payload capacity of the electric vehicle. First, an empty route 
list is created, and the depot is added. Then, the nearest customer 



to the depot is added to the route. Continue to add the unserved 
customer with the earliest delivery date as long as the vehicle 
capacity is not exceeded. In each addition, the served and 
unserved lists are updated. If a load issue arises with the last 
added customer, this customer is removed from the route, and 
the depot is added at the end of the route list to complete the 
route.

3.2. Operators and Operator Selection Mechanism

Neighbor solutions are created by destroying and subsequent 
repair approaches. The variety of operators is significant for 
obtaining reasonable solutions. Each set of operators has its own 
weight, and initially all the operators are assumed to be equal 
weights. In the initial state, the weights are calculated by the 
formula and , where denotes the set of repair operators, 
and is the set of destroy operators. Also, the local search 
(LS) operators have equal operator weights. The ratio of the 
weight of each operator to the sum of the weights of that operator 
set gives a probability value. The calculation of the likelihood 
value is given in Equation 2, where (i) represents the operator 
weight.

(2)

This process represents the probability of an operator being 
selected. This structure is called the roulette wheel method. The 
calculated operator probability is increased in specific iterations 
according to the performance score. The procedure for finding
this score is given in Equation 3.  

(3)

The score is set to zero if the operator leads to the best result, 
improves the existing solution, is an acceptable solution, or fails 
to find a solution. At the given iteration step, the operator 
weights are updated with Equation 4. 

(4)

When determining the new weight, w(i) is the weight before the 
update, is the number of times of operator i is used, and is
the score of operator i. The parameter r determines the balance 
that will be dominant between the old weight and the newly 
calculated score . This value is randomly chosen between 
(0,1) and is essential for parameter optimization. A high value 
indicates a weight preference for score, and a low value 
indicates a weight preference for past performance.  

Customer Removal Operators: Three customer removal 
operators are used that are given in Table 1.

Table 1 : Customer removal operators.

Operator Operator description
Related 

Customer 
Selecting a starting customer removes 
related customers that close to that 

Removal customer from the route.
Random Customer 

Removal
randomly selected customers are 

removed from the route.

Worst  
Distance 
Customer 
Removal

The customers that will cause the 
largest cost reduction or are in the 
highest range are removed from 
the route.

Customer removal operators select and remove customers 
according to specific methods. The removed customers are 
added to the unserved list.

Customer Insertion Operators: Two customer insertion 
operators are used as given in Table 2.

Table 2 : Customer insertion operators.

Operator Operator description
Greedy 

Customer 
Insertion

Calculate the cost of the selected customer 
when added to each location in the route. 
It is added to the route with the best cost in 
a greedy approach.

Regret-2
Customer 
Insertion

A regret value is calculated for each 
customer and the customer with the 
largest regret value is added. 

The customer insertion operator selects and adds removed 
customers to the unserved list.

Route Removal Operators: Route removal operators are given 
in Table 3.

Table 3: Route removal operators.

Operator Operator description
Random Route

Removal
All routes within the selected random 
route customers are removed.

Greedy Route 
Removal

Select the route with the highest cost 
among all routes and remove all 
customers on the route.

The route removal operator removes all customers of the 
selected route and adds them to the unserved list.

Local Search Operators: The Local Search operators are given 
in Table 4. 

Table 4 : Local Search operators.

Operator Operator description

IntraRelocate Moving a customer on the same 
route to another location.

IntraExchange Relocation of two customers on the 
same route.

IntraOrOpt Relocation of several consecutive 
customers on the same route to 
another location.

IntraTwoOpt Relocation of two sub-routes on the 
same route.



InterRelocate Relocation of one customer on 
different routes to another route.

InterExchange Relocation of two customers on 
different routes.

InterCrossExchange Relocation of two sub-paths on 
different routes.

Inter2Opt* Reorganizing routes by changing 
the intersection points of two sub-
paths on different routes.

Local search operators aim to improve solution quality with 
different route operations.

3.3. Acceptance Criteria

Each new solution obtained from applying the operators is 
compared with the current solution S. If a better solution is 
obtained, it is accepted as the current solution. Otherwise, the 
algorithm accepts the poor solution with a probabilistic 
approach. The acceptance criterion evaluates the probability 
value. In this study, the Metropolis Criterion, which is the 
acceptance criterion of the SA algorithm, is used. It is given by 
Equation 5 and Equation 6.  

(5)

(6)
By calculating the difference between the current and new 
solution costs, the function depending on the 
temperature value T produces a probability value P. The P value 
is compared with the generated random value between 0 and 1. 
If the P value is greater than the random value, the worse 
solution is accepted. In Equation 6, worse solutions are accepted 
by producing values close to 1 at high-temperature T. As the 
temperature decreases in subsequent iterations, the P value 
converges to 0 and only better solutions are accepted. The 
pseudo-code is given in Algorithm 1.  

Algorithm 1: SA acceptance criteria 
S    ← current solution 
f( ) ← cost function

T    ← temperature
S*  ← best solution
acceptance rate ←
until termination criteria then
        S’ ← generate new solution

if f(S’) < f(S)  or acceptance rate > random(0,1) then
S← S’
if f(S’) < f(S*) then

S*← S
              end if
       end if

T← T * 

The temperature is decreased using Equation 7. 

(7)
At each iteration, the temperature is reduced by cooling 
parameter .

3.4. Neighborhood Search 

In this study, the Hybrid ALNS algorithm is used for the 
CEVRP. The pseudo-code of the ALNS algorithm is given in 
Algorithm 2. The performance of ALNS, ALNS_Swap and 
ALNS_LS are compared for solving CEVRP problem. 

ALNS: A methodology in which ALNS includes customer 
removal, customer insertion and route removal operators.
ALNS_Swap: In addition to ALNS, the method includes 
IntraRoute and InterRoute operators that perform swapping in 
route (intra-route) and between routes (inter-route).
ALNS_ LS: The method uses all eight local search operators in 
addition to ALNS operators.

Algorithm 2: Hybrid ALNS with LS/Swap operators 
S    current   ← Get initial solution
S’  new solution, S* best solution ← S
f( ) ← cost function 
T   ← temperature
K   ← Predefined route removal iteration interval
Z   ← Weights update interval
for i ← 1 to MaxIterations do
     if i == 0 (mod K) then 

Call route removal operator (RR)
S’ ← Call customer insertion operator (CI)

else
Call customer removal operator (CR)
S’ ← Call customer insertion operator (CI)

end if 
acceptance rate ← 
if  f(S’) < f(S)  or acceptance rate > random(0,1) then

S ← S’  
           new S’ ← Call LS operator or Swap operator 

if f(new S’) < f(S) then
          S← new S’ 

end if
if  f(S) < f(S*) then

         S* ← S
end if

end if 
if i  == 0 (mod Z) then 

Update weights based on scores
end if
T← T * α

end for
return S*

In the Algorithm 2, current solution (S) replaces the initial 
solution with operators at each iteration. Each iteration uses 
customer removal and customer insertion operators, 
respectively. In every K iteration, the route is wholly disrupted 
and reorganized. These operations produce S' solutions. The new 
solutions are accepted as in Algorithm 1. Swap or LS operators 
are applied to the accepted solution to obtain new solution S'. 
This is done to approach the global best. If the new solution S' is 
better than S, the value of S is updated. When the best solution is 
found, S* is updated. 

3.5. Station Insertion 

For large size problems, it is observed that the solution time 
increases significantly when the battery capacity is checked in 
addition to the load capacity check at each iteration. Therefore, 
when the specified number of iterations is reached, the station
addition operator is used to find the best solution. The need to 
add a charging station arises before the customer node indicates 
that the vehicle's battery capacity has been exceeded. The cost 
calculation of station i for each charging station is given by
Equation 8 where is the state of charge from the previous 
customer to the station, and is the state of charge from the 
charging station to the customer point where the battery capacity 
is exceeded. 

, >0 (8)



According to the constraint given by Equation 8, and 
should be positive. The approach for station insertion is given in 
Figure 1. 

Figure 1: Charge Station insertion approach.

In the example route in Figure 1, the EV has a sufficient state of 
charge (SoC) for customer 1 but requires additional charging for 
customer 2. This means an infeasible route. In this case, the route 
should be made feasible by adding a charging station (CS) 
between customer 1 and customer 2 to complete the route. If 

<0 or <0, the station insertion is applied to the previous 
point.  The map representation of a C10 problem made feasible 
by adding a station is given in Figure 2. 

Figure 2 : The representative routes for the problem set C10

As seen in Figure 2, the yellow route was completed without 
going to the charging station. On the pink route, when passing 
from customer 113 to customer 26, the charging constraint given 
by Equation 8 is not met. Therefore, the charging station 
numbered CS8 between these two customers has been added to 
the existing route.

4. Comparison of Performances
The solutions are obtained for the given problem sets using 
ALNS, ALNS_Swap, and ALNS_LS. Their performances are
compared in terms of the minimum total distance objective 
function. The experiments used Python 3.12 with an AMD 
Ryzen 7 4700U @2.00GHz processor and 8GB RAM. For each 
problem, the methods are run with 10000 iterations to get results 
in a reasonable time and a cooling rate of 0.9985, which means 
the temperature does not drop quickly. Weight update is chosen 
every eight iterations, and the route removal is achieved every 
50 iterations. In our test environment, the battery capacity is set 
at 3000 kWh to test the EV's charging station visits. In addition, 

the vehicle capacity is set at 350 kg. The results are given in 
Table 5. 

Table 5 : Comparison of the results.

Problem

Minimum Total Distance 
(m)

Solution Time
(s)

ALNS ALNS
Swap

ALNS
LS

ALNS ALNS
Swap

ALNS
LS

C05 4506 4129 4129 4,17 3,49 4,08
R05 5718 5718 5718 3,06 2,19 2,50
RC05 4982 4982 4982 3,03 4,05 2,60
C10 6497 6497 6497 3,79 4,21 3,32
R10 5891 6278 6055 4,68 3,68 3,88
RC10 6736 6736 6736 4,30 3,92 3,56
C20 11938 10978 10443 6,31 6,12 5,78
R20 11817 11817 11817 7,36 5,69 6,36
RC20 10065 10028 10028 5,87 6,83 6,75
C40 17565 17763 17609 14,49 12,31 12,42
R40 19770 19996 19771 15,31 11,58 13,98
RC40 18402 17867 17867 15,37 12,72 14,01
C60 29400 29282 28709 27,45 21,67 24,50
R60 27617 27471 27546 31,64 22,85 26,82
RC60 28062 27817 28164 30,44 27,43 25,84

When the results are analysed in terms of total distance, it is seen 
that ALNS gives poor results for the datasets with clustered 
customers, especially in the problem with 20 customers (C20). 
On the other hand, ALNS_Swap gives worse results on data with 
clustered customers and the best results on data with random 
clustered customers. While ALNS_LS gives better results on 
data with the clustered customers, it is moved away from good 
solutions on data with random and randomly clustered 
customers. However, in general, ALNS_LS outperforms the 
others. For the comparative analysis, the difference with the best 
value for each problem is given in Table 6. 

Table 6 : Differences from the best solutions 

Problem Gap
ALNS ALNS_Swap ALNS_LS

C05 377 0 0
R05 0 0 0
RC05 0 0 0
C10 0 0 0
R10 0 387 164
RC10 0 0 0
C20 1495 535 0
R20 0 0 0
RC20 37 0 0
C40 0 198 44
R40 0 226 1
RC40 535 0 0
C60 691 573 0
R60 146 0 75
RC60 245 0 347
Total 3526 1919 631

As seen in Table 6, ALNS had the highest gap value in total and 
made a difference in the largest number of datasets.
ALNS_Swap showed less gap value than ALNS and showed a 
difference in fewer datasets. Besides, ALNS_Swap has less 



runtime than the others. ALNS_LS has the lowest total gap value 
and showed the least difference in the dataset.

According to the results in Table 6, ALNS_LS gives results 
closer to the known best solutions than the other two algorithms. 
According to these results, ALNS_LS shows the best 
performance because it has the lowest total gap value and created 
the least difference in the dataset. ALNS has the highest total gap 
value and appears to be the weakest method in terms of 
performance.

5. Conclusions

This study deals with the CEVRP by using Hybrid ALNS 
algorithm. The adaptive nature of the ALNS algorithm leaves an 
open door for experimenting with different methods, allowing us 
to obtain effective results with operators that can better scan the 
solution space. The study compares the performance of ALNS, 
ALNS Swap, and ALNS_LS. ALNS_Swap is derived from 
ALNS and uses swapping operators. ALNS_LS performs local 
search with eight additional operators. For the minimum total 
distance objective function, feasible routes are obtained in the 
full charging strategy. The results show that using LS and 
displacement operators gives better results than the average. In 
particular, it positively affects the result regarding distance and 
running time. 

In future work, it is planned to include charging station addition 
and removal operators in the operator pool to improve the 
performance of the algorithm. Station operators will be used 
within iterations to search the better solutions. Furthermore, 
different charging strategies and objective functions can be used 
by considering the customer requirements. The impact of 
different charging strategies on the solution will be analysed.
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