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Abstract. Modern power systems are continuously exposed to mali-
cious cyber-attacks. Analyzing industrial control system (ICS) traffic
data plays a central role in detecting and defending against cyber-attacks.
Detection approaches based on system modeling require effectively mod-
eling the complex behavior of the critical infrastructures, which remains
a challenge, especially for large-scale systems. Alternatively, data-driven
approaches which rely on data collected from the inspected system have
become appealing due to the availability of big data that supports ma-
chine learning methods to achieve outstanding performance. This chap-
ter presents an enhanced cyber-attack detection strategy using unlabeled
data for ICS traffic monitoring and detecting suspicious data transmis-
sions. Importantly, we designed two semi-supervised hybrid deep learning-
based anomaly detection methods for intrusion detection in ICS traffic
of smart grid. The first approach is a Gated recurrent unit (GRU)-based
stacked autoencoder (AE-GRU), and the second is constructed using
a generative adversarial network (GAN) model with a recurrent neu-
ral network (RNN) for both generator and discriminator that we called
GAN-RNN. The employment of GRU and RNN in AE and GAN models
is expected to improve the ability of these models to learn the tempo-
ral dependencies of multivariate data. These models are used for feature
extraction and anomaly detection methods (Isolation forest, Local out-
lier factor, One-Class SVM, and Elliptical Envelope) for cyber-attack in
power systems. These approaches only employ normal events data for
training without labeled attack types, making them more attractive for
detecting cyber-attack in practice. The detection performance of these



2 Authors Suppressed Due to Excessive Length

approaches is demonstrated on IEC 60870-5-104 (aka IEC 104) control
communication that is often utilized for substation control in smart grids.

Keywords: Cyber-attack detection, Protocol IEC 104, deep learning,
semi-supervised methods, anomaly detection.

1 Introduction

Smart grids play a central role in the efficient management and control of the
produced energy. They are designed to transform traditional electricity grids
from totally centralized and isolated systems to fully connected and decentral-
ized systems that rely on distributed generation, transmission, distribution, and
monitoring processes [1]. Substantially, modern power grids come up with many
enhancements, including self-healing, offering more services to consumers (e.g.,
consumers with a multitude of services), improving power quality and reliability,
integrating different sources of energy, and enabling robust and automatic con-
trol and supervision procedures [2, 3]. Power grids have become more dependent
on common information technology computing and networking infrastructure
for conducting all aspects of operation and maintenance, which significantly in-
creased their vulnerability to anomalies and cyber-attacks. Since intra-SCADA
communications are based principally on DNP3 (Distributed network protocol
DNP3), International Electro-technical commission IEC60870-5, Profibus IEC
61850 [1], the backbone network involves different wired and wireless technologies
and protocols including Zigbee, WiFi, IP-based networks and cellular networks
(e.g., 4G) [4]. However, with the evolving of power grids into a cyber-physical
systems, their vulnerabilities to cyber-attacks increased more than before [5].
Generally speaking, cyber-attacks in power systems could result in the loss of
availability and may have a real severe impact on physical processes (e.g., human
life, environment, damage of equipment, etc.), loss of productivity, and revenue.

Power grids are generally placed in remote sites, and they are remotely mon-
itored and controlled via SCADA (Supervisory Control and Data Acquisition)
Systems [6, 7]. The central role of SCADA systems is gathering and analyzing
data, communicating, and controlling the operation of systems in real-time [8, 9].
Essentially, SCADA systems comprise several key components, including the Hu-
man Machine Interface (HMI), the Master Terminal Unit (MTU), and Remote
Terminal Units (RTU) [9, 10]. Specifically, HMI enables operators to monitor the
inspected process’s state and adjust its control settings. The role of the MTUs,
the heart of the SCADA system, is to store and process information gathered
from field devices and communicate control signals. RTU receives commands
from the MTU to control the local process, acquire data from field devices,
and continuously transmit it to the MTU. Each RTU is usually connected to
numerous sensors and actuators managing a local process or field equipments.
The communication between these components can be wired or wireless via the
internet. The common protocols (ModBus, Profibus, DNP3) used in the commu-
nication between these components present many vulnerabilities regarding the
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authentication mechanisms between the MTU and the other components, the
integrity of the transmitted packets, and the anti-replay mechanisms. Modern
power systems are continuously exposed to malicious cyber-attacks and anoma-
lies, which are challenging and hard to identify [11–13]. If not detected accurately
and timely, cyber-attacks and anomalies in industrial systems could decrease
plants’ productivity, efficiency, and safety, cause severe economic losses, and
damage the attacked system. For example, disruption of electric power opera-
tions could significantly impact national security and the economy. Therefore,
designing an accurate and sensitive intrusion and anomaly detection method is
undoubtedly necessary to ensure the productivity and safety of power systems
against cyber-attacks and anomalies.

Fig. 1: Smart grid

Numerous intentional cyberattacks targetting power systems have occurred
in the last two decades [14, 15, 5]. For example, in December 2015, a cyber-attack
on the Ukraine power grid caused circuit breakers at 30 substations to trip,
cutting power to around 225,000 customers [16]. A denial of service (DoS) tar-
geted the telephone system and communication network, making the call center
unavailable to customers. In addition, the malware implanted on the human-
machine interface (HMI) was employed for deleting software on the system,
which prevented the operator from characterizing the extent of the power out-
age and hampered repair actions. SCADA equipment was rendered inoperable,
and power restoration had to be completed manually. It could have resulted in
severe damage to the power grid. These attacks highlight the lack of a security-
driven technique for building up and maintaining power systems. Hackers exploit
vulnerabilities in these critical systems to penetrate and gain access to SCADA
networks that monitor physical processes, collect, manipulate and destroy critical
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data exchanged between facilities and operators, and implant malicious malware
to disrupt the normal operating conditions of systems [17]. Moreover, attacks can
be implemented on different layers (networks, mac, and physical) by exploiting
the hosted protocols (e.g., DNP3, Modbus, Transmission control protocol TCP,
User datagram protocol UDP, Internet control message protocol ICMP, and Hy-
pertext transfer protocol HTTP) [1].

Power grids are exposed to a variety of cyber-attacks, which can be grouped
into three groups according to the attacker’s targets [18, 2]. Attacks within the
first group attempt to violate confidentiality and potentially privacy by infiltrat-
ing the system and gaining access to devices and stored/exchanged data [18].
Hence, they can collect, manipulate, change and exploit information about the
grid’s operation and consumers (personal information, consumption profile, bills).
To this end, various techniques are elaborated, including traffic sniffing, eaves-
dropping, man-in-the-middle-based attacks, and IP (Internet protocol) / ARP
(Address resolution protocol) spoofing [2]. The second group of attacks consists
of data integrity attacks (DIA) [19]. In DIA attacks, malicious attackers try
to falsify the sensor measurements by compromising device settings and com-
mands and injecting false data [20, 21]. The third group relies on the availability,
and their main objective is to make targeted devices and data inaccessible tem-
porarily or permanently and at least delay their responses. They can manifest
in different forms, like link failures, bandwidth exhaustion, flooding, and mal-
formed data structure [22]. They are commonly referred to as DOS (Denial of
service) attacks and DDOS (distributed DOS) if initiated using multiple sources.
In practice, several techniques have been used to create DOS situations, includ-
ing Jamming, buffer overflow, TCP-based floorings, UDP-based amplification,
and malwares [23, 24].

Smart grid networks play a central role by ensuring the distribution and
transmission of electric supply to consumers. Connecting smart grids with the
internet generated much space for various types of anomaly injection and cyber-
physical attacks. In addition, numerous industrial control protocols, such as
Modbus, Goose, or IEC 104, are now used to operate within a smart grid substa-
tion and interconnect the control system with power equipment. However, this
makes a smart grid network a potential target for outside hackers. Protecting
smart grid networks is indispensable to ensuring security and energy produc-
tion, and it has recently become even more critical than ever before [16]. This
is a challenging task because smart grid networks are continuously exposed to
malicious attacks coming from the outside and inside the network.

1.1 Contribution

This chapter presents a semi-supervised deep learning-based approach for de-
tecting suspicious communications in ICS/SCADA networks. Unlike supervised
methods, semi-supervised cyber-attack detection methods need only the data of
normal events to train the detection model, making them more attractive for
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detecting cyber-attacks in smart grid networks since it is not always easy to get
accurately labeled data. Of course, the major contributions of this chapter are
summarized bellow.

In this chapter, two effective deep learning-driven cyber-attack detection
schemes have been introduced for ICS traffic monitoring and detecting suspi-
cious data transmissions in a smart grid network. Importantly, the proposed ap-
proaches combine the advantages of deep learning models and semi-supervised
anomaly detection methods for intrusion detection in ICS traffic of smart grid.
It is worth noting that these semi-supervised anomaly detection methods need
only normal instances of ICS traffic (i.e., unlabeled data), which make them ap-
propriate for detecting unknown attacks. We used the proposed deep learning
to learn important features in ICS communication traffic data and the sensi-
tivity of semi-supervised anomaly detection methods for cyber-attack detection.
The first approach is a Gated recurrent unit (GRU)-based stacked autoencoder
(AE-GRU), and the second is constructed using a generative adversarial network
(GAN) model with a recurrent neural network (RNN) for both generator and dis-
criminator that we called GAN-RNN. The employment of GRU and RNN in AE
and GAN models is expected to improve the ability of these models to learn the
temporal dependencies of multivariate data. These models are used for features
extraction and anomaly detection methods (Isolation forest, Local outlier factor,
One-Class SVM, and Elliptical Envelope) for cyber-attack in power systems. As
we know, this is the first work applying semi-supervised deep learning-driven
anomaly detection algorithms to detect attacks in ICS flow data of smart grids.
At first, the considered deep learning-based models are built based on train-
ing data (normal ICS traffic) and then used to detect cyber-attacks that can
be launched from inside or outside the network. We assessed the effectiveness of
these approaches on IEC 60870-5-104 (aka IEC 104) control communication that
is often utilized for substation control in smart grids. Four statistical indices are
employed to compare the discrimination accuracy of the considered methods:
accuracy, precision, F1-score, and the Area Under the Curve (AUC). Results
revealed the promising performance of the proposed approaches in detecting
different types of attacks.

Section 2 highlights literature reviews on the related works, and Section 3
introduces the proposed deep learning-based malicious attack detection meth-
ods. Section 4 assesses the proposed method on IEC 60870-5-104 (aka IEC 104)
control communication that is commonly utilized for the substation control in
smart grids. Finally, Section 5 concludes this study and sheds light on potential
future research lines.

2 Related work

Protecting smart grid networks from malicious attacks gained much consider-
ation in the last two decades [25–29]. For instance, in [30], Matoušek et al.
investigated the utility of ICS flow monitoring in dealing with internal and ex-
ternal attacks against smart grids. First, the authors proposed a new ICS flow
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using extended IPFIX flows with application layer headers. After that, the con-
structed flows are used with statistical and deterministic probabilistic automata
(DPA) techniques for anomaly-based attack detection. The proposed techniques
were validated using IEC 60870-5-104 standard when considering rogue devices,
anomalous traffics, unauthorized data downloads, and scanning attacks. Results
had shown promising outcomes that depend on some tuning parameters of DPA.
In [31], Jarmakiewicz et al. developed a cyber-security analysis system for a do-
mestic power grid environment. The system correlates all information gathered
from control subsystems (e.g., SCADA, IDS, and firewalls) to detect attacks
and enables consistently necessary information for identifying eventual threats.
Tests demonstrated that the system could detect attacks and anomalous be-
haviors in the grid. The general performances of such systems mainly rely on
the deployed technologies and their detection capabilities. In [32], Hong et al.
proposed two anomaly-based systems to tackle attacks on substations in power
grids. The first system is host-based, which aims to determine the type and
number of attacks affecting the substations according to several anomaly in-
dicators (e.g., intrusions on the user interface or Intelligent Electronic Devices
(IEDs), file system modifications, and IED settings alteration). The system as-
sumed that all these indicators were available from other security mechanisms.
The second system is a network-based system implemented to detect multicast
message attacks, namely Generic Object Oriented Substation Event (GOOSE)
and Sampled Measured Value (SMV). After being filtered, the traffic character-
istics in terms of the number of messages per observation time, sequence and
state number, timestamp, and data integrity are used to reveal anomalies and,
eventually, attacks exploiting both messages. Besides the definition of the de-
cision rules about these parameters that can be a challenging task in practice,
they are commonly compromised by attackers.

The authors in [33] introduced pattern and flow-driven anomaly detection
for communication pattern anomaly detection. Specifically, the pattern-based
approach is employed to detect anomalies in communication patterns among
hosts, and the flow-based approach for monitoring traffic patterns for individual
flows. Results based on normal traffic reveal the promising performance of these
detection schemes by reaching lower false alarms than general enterprise systems.
In addition, results indicate the capacity of these schemes in detecting some com-
mon attacks launched on the MODBUS servers, including DoS attacks, scanning,
system degradation, modified data, and DoS attack. In [34], Yans et al. designed
an intrusion detection system by combining signature-based and model-based
techniques for SCADA systems that support IEC 60870-5-104 standard. Specif-
ically, the signature-based technique is employed to detect known attacks, and
the detection signatures are defined accordingly. The model-based detector is ap-
plied to predict unknown attacks. To identify attack types, cause of transmission,
and length fields are used to build a protocol-based model, and TCP connection
requests, server’s port numbers, and legitimate users are used to build traffic-
based models. However, this IDS can detect a limited number of attacks. In [35],
Lin et al. focused on the intra-SCADA exchanges and how they can be utilized
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to uncover related anomalies. Inter-arrival times are generated and clustered in
categorical classes to construct traffic models. Then the Probabilistic suffix tree
(PST) is applied to find out latent models. In [36], Kleinmann et al. introduced
an attack detection scheme based on statechart. The procedure starts by con-
verting traffic data to signal and discerns peaks and the corresponding cyclic
model. Then, individual DFA (Deterministic finite automata) are created per
cyclic model. Finally, the resulting DFA is used to construct the system state-
chart, which will be involved in attack detection. In [37], an innovative approach
using a private blockchain system to detect anomalies in a smart grid network
and a novel Linear Support Vector Machine Anomaly Detection (LSVMAD)
approach in a fog computing (FC) environment is proposed. The LSVMAD ap-
proach achieved a detection accuracy of 89% in the FC environment and 78% in
the cloud.

3 Methodology

This section presents the materials needed to design the proposed semi-supervised
detection scchemes.

3.1 Deep Recurrent Autoencoder

Traditional autoencoders were designed especially for dimentionality reduction
applied successfully to images, where the training approach is unsupervised with-
out labeling data [38–40]. The key concept of the AE is replicating its input at
its output. An AE comprises an encoder and a decoder, which can have multiple
layers (Figure 2). It is trained in an unsupervised manner without using labeled
data. The training stage aims to optimize a cost function that quantifies the de-
viation between the input X and its reconstruction at the output X̂. For more
details on AEs, see [41, 39].

Fig. 2: Basic illustration of an AE model.

The existing recurrent model learning, such as Recurrent Neural Network
(RNN) [42], Long short-term memory (LSTM) [42, 43], Gated recurrent units
(GRUs) [44] are built-in supervised way. They are dedicated to capturing the
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time dependencies in a time series (or data sequence), with a memory cell and
gates mechanism that help to remember historical data features. In this first
proposed approach, we merge the desirable features of the AE and RNN-based
models in one hybrid architecture to improve the encoding of time-series data
in an unsupervised manner. To this end, the minimization of the reconstruction
error measured using Binary Cross-Entropy (BCE) is expressed as follow:

LAE−GRU = −(X log(X̂) + (1−X) log(1− X̂)). (1)

The loss function represented by the BCE considers the input as binary or prob-
ability data distribution. The autoencoders are composed of two parts encoder
and decoder; we incorporate two stacked Gated Recurrent Unit (GRU) into the
encoder and the decoder (Figure 3). The main objective of integrating GRU
is to serve as a feature extractor for time series (normal traffic) by training to
reconstruct efficiently the normal data input in an unsupervised manner.

Fig. 3: The AE-GRU structure.

3.2 The hybrid GAN-GRU deep learning method

The second proposed approach is based on GAN model, which has recently
emerged as an effective and efficient deep learning model for data generation
and learning data representations from unlabeled data [45–47]. GAN has been
successfully applied in various areas, such as image data generation and learn-
ing and time-series prediction [48]. Conventionally, GANs contain two neural
networks called a generator G and a discriminator D, which are placed in an ad-
versarial way and make GANs very flexible. They are trained in an unsupervised
way, making them very attractive as labeling is an expensive task. Moreover, the
GAN’s generator and discriminator could be trained via only backpropagation.
GAN adopts a clever procedure in training: the generator model is trained to
continually generate fake data, while the discriminator model seeks to identify
between true and fake (generated) data (Figure 4). In the discriminative model,
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D, learning is based on two sources of data: the training dataset (true data) and
noisy data (simulated) produced by the generative model G. After the training
process, the discriminator will be able to distinguish between true and simulated
data.

Fig. 4: The GAN-GRU structure.

GAN training optimize a cost function V(G,D) as:

min
G

max
D

V(G,D) = E pdata(x)logD(x) + E pg(x)log(1−D(G(z))) (2)

where pz(z) describe a prior on input noise variables and pdata(x) represents the
probability distribution of the true data. The distribution of samples is denoted
by pg(x) produced by the generator. During the GAN training, the generator is
encouraged to generate a distribution pg(x) similar to pdata(x) of the real data.
Indeed the generator helps the discriminator classify new data points (true,
generated). After completing the training, the pg(x) becomes similar to pdata(x)
of the real data, which is the distribution of the historical data learned during
the training by generator and discriminator.

In the GAN model, the generator and discriminator models can be any kind
of neural networks, such as recurrent networks (e.g., RNN, LSTM, or GRU),
making the GAN model very flexible. For instance, in the GAN-RNN, the gen-
erative and discriminative models are recurrent neural networks hence the name
GAN-RNN. Indeed, the GANs are not designed for time-series modeling; how-
ever, their ability for the data distribution approximation makes them able to
predict the next values of a given data sequence and thus can be investigated
for improving feature extraction. The central idea of the second approach is to
adopt GRUs and arrange them in an adversarial way in one architecture de-
noted by Generative is G-GRU, and the discriminative is D-GRU (Figure 4).
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The training procedure of the proposed GAN-GRU approach remains similar to
the traditional GAN model.

The proposed deep learning models will be used to model ICS traffic flow
without attacks. Stable and periodic features characterize ICS communications,
which is not the case with the common Internet traffic [49]. After that, the
trained models can be used in anomaly detection methods to detect potential
attacks in new arrival data.

3.3 Semi-supervised anomaly detection methods

Four anomaly detection methods have been adopted in our study, namely: One-
Class SVM (1SVM), Local outlier factor (LO-Factor), Isolation forest (i-Forest),
and Elliptic Envelope (E-Envelope). Those methods are constructed using a
semi-supervised training procedure, meaning that only normal data (traffic with-
out attack) are used in training, while the testing could include both normal and
abnormal data without labeling (in the presence of attacks). The detection stage
aims to distinguish between normal and abnormal traffic communications on a
smart grid.

The 1SVM algorithm is one of the most popular anomaly detection tech-
niques, known for its insensitivity to noise measurements and outliers in training.
Crucially, the 1SVM is based on two essential concepts, maximizing the margin
and mapping the data to a high dimensional feature space induced by a kernel
function [50]. It should be noted that 1SVM is a semi-supervised binary classi-
fier [38, 51]. More specifically, the 1SVM is constructed using unlabeled training
data that contains inliers samples (anomaly-free data). In the training stage,
the 1SVM process consists of estimating a boundary area, which contains most
of the training data. This is carried out by determining a hyperplane with the
largest distance to the nearest training data [52]. After that, the designed 1SVM
is used to identify anomalies (outliers) by checking if a new test data falls within
this boundary or not. Of course, testing data points are declared normal (inlier)
if they are within the previously defined boundary; otherwise, they are identified
as an anomaly (outliers). The 1SVM procedure assures finding a hyperplane that
produces a good data separation by using kernel tricks.

The Isolation Forest approach was primarily designed by Lui in 2008 [53] and
improved later in 2011 [54] to deal with anomaly detection problems where only
normal observations are available. Importantly, it is an unsupervised anomaly
detection approach since it is designed without the need for labeled data. The
essence of the approach is founded on the principle of the Decision Tree algo-
rithm, and it identifies anomalies by isolating outliers from the data [54]. The
iF is based on the well-known Random Forest, which consists of a set (ensem-
ble) of decision trees constructed during the training phase [55]. Isolation Forest
can be considered an ensemble learning approach to deal with classification and
regression problems.
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In this study, we considered two other commonly used anomaly detection
schemes, namely Elliptical Envelope (EE) [56] , and Local Outlier Factor (LOF)
[57]. In the LOF detector, an anomaly score is computed for each observation by
measuring the local divergence of the density of a given sample compared to its
neighbors. In this study, the number of neighbors used in LOF is 35. In the EE
detector, which aims to fit an ellipse around the data using minimum covariance
determinant (MCD), the proportion of points to be included in the support of
the raw MCD estimate is 0.9.

In this chapter, we will compare the performance of the AE-GRU and GAN-
GRU-based 1SVM, LOF, i-Forest, and EE methods for cyber-attack detection
in a smart grid. Next, we will discuss how these two models (i.e., AE-GRU and
GAN-GRU) can be used for cyber-attack detection.

3.4 The proposed deep-learning-driven anomaly detection
framework

This study presents semi-supervised hybrid deep learning methods to detect cy-
ber attacks in smart grids, particularly monitoring smart grid communication
networks. The proposed approach constitutes a framework for online monitor-
ing of the communications (traffic) within an industrial network based on IEC-
60780-5-104 (aka IEC 104), often used for smart grids’ substation control [58].
Importantly, the IEC-104 protocol, widely adopted in Europe, represents an in-
ternational standard of data transmission between a power SCADA center and
outstations via TCP/IP [59]. This protocol enables connecting MTUs and RTUs
using a standard TCP/IP network. Specifically, the IEC-104 protocol ensures
data transmission in two directions: from an RTU to the MTU and vice-versa.
More details about IEC-104 protocol can be found in [35, 58].

Generally speaking, network communication consists of timed packets sent.
Some of them wait for confirmation and have a cause of transmission. Normal
communication can be seen as data sequences and time-series data. Furthermore,
temporal data dependencies have to be modeled to learn the data distribution
of normal traffic. In this chapter, the designed deep learning models will be used
to capture the evolution in normal data. The AE-GRU and GAN-GRU mod-
els integrate GRU models in their structure, which are powerful deep learning
models designed with a gating mechanism and memory cell, allowing them to
learn long-range dependencies. As discussed above, for instance, in the AE-GRU
model, the autoencoder performs two essential tasks I) features extraction and
II) dimensionality reduction. Moreover, deep AE constructs a new compact rep-
resentation that incorporates pertinent features that we call features space built
during the training procedure. We combined the robustness of the deep autoen-
coders and the effectiveness of the recurrent neural network in order to design
a deep recurrent autoencoder model, able to learn learning lengthy-time pe-
riod dependencies. The proposed framework is a data-driven approach based on
learning from data. The proposed hybrid model learns normal traffic, where the
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communication responds to the IEC-104 protocol constraints (request, response,
acknowledgment).

Figure 5 illustrates the flowchart of the proposed cyber-attack detection pro-
cedure. The experiment is divided into the training phase and the detection
phase. In more detail, we remove missing values and standardize numeric fea-
tures in the data preprocessing step. In the training step, we train the neural
network and anomaly detection procedures using attack-free data. Finally, the
trained model is verified using the testing data.

Fig. 5: Flowchart of the detection framework.

In the training stage, the data is preprocessed by normalization and then
arranging data into a sequence with a given length. The next step consists of
learning to encode the data sequence into a compact representation that contains
pertinent features. Furthermore, the training procedure aims to minimize the re-
construction error of the encoded data sequence; this step is repeated until the
convergence of the trained model and until the stabilization of the reconstruction
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error. In fact, the result of this step is a feature space of normal traffic commu-
nications with no attack, which is used to feed the anomaly detection considered
methods in this study. Indeed, the anomaly detection considered methods are
trained using a compact version of the normal data and tested later with data
containing attacks and normal communication to evaluate the detection perfor-
mance.

Here, we evaluate two types of autoencoders, the AE-GRU and the GAN-
GRU. Recall here that the training of the AE-GRU is accomplished by mini-
mizing the reconstruction error of the training dataset using the cross-entropy
loss function. In the GAN-GRU, the discriminator is trained to figure out how
to distinguish between real data (training dataset) from fake generated by the
generator using noisy data. In other words, the discriminator learns to recognize
the generator’s flaws.

The anomaly detection approaches used are trained based on the resulting
feature space containing the encoding of normal data. Furthermore, when a data
sequence belongs to a given attack category, its numerical signature is encoded
with model parameters learned using normal data, it will be certainly different
from normal encoding, which can be sensed by the detectors.

In this study, five statistical scores are employed to quantify the performance
of the studied methods computed using a 2 × 2 confusion matrix: Accuracy,
Precision, Recall, F1-score, and Area under curve (AUC). For a binary detection
problem, the number of true positives (TP), false positives (FP), false negatives
(FN), and true negatives (TN) are used to compute the evaluation metrics.

Accuracy =
TP + TN

TP+ FP + TN+ FN
. (3)

Recall =
TP

TP + FN
. (4)

Precision =
TP

TP + FP
. (5)

F1− score = 2
Precision.Recall

Precision + Recall
=

2TP

2TP + FP + FN
. (6)

4 Results and discussion

We conducted several experiments to evaluate the performance of the consid-
ered anomaly detection models used to design the intrusion detection framework.
Indeed, we assess the intrusion detection system performance with several at-
tacks, namely: one man-in-the-middle (MITM) attack, DOS, Connection loss,
injection, spoofing, scanning, switching, replaying RTU, blocking HMI, replay-
ing HMI, value changing, masquerading and Rouge devices. The present study
adopted two deep recurrent auto-encoders combined with four anomaly detection
methods to design a data-driven intrusion detection framework. In order to vali-
date the effectiveness of the proposed approach, we used three datasets of smart
grid ICS containing normal and various attacks on IEC 104 communications.
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4.1 Data description

This part is devoted to assessing the efficiency of the proposed deep learning-
driven approaches in detecting cyber-attacks in the ICS traffic flow of smart
grids. The study is accomplished through actual data from a publicly available
database provided in [60]. Three different datasets comprise normal traffic data,
and different types of attacks are considered in this study. The first dataset,
called BUT-IEC104-I, was generated by from Brno University of technology [30,
61] and contains traffic records from a real smart grid that supports the indus-
trial network standards IEC 608705-104. The second data, called VRT-IEC 104,
represent various attacks on IEC 104 communication created using IEC virtual
testbed developed at Brno University of Technology. The dataset was captured
at the HMI side in the topology. The third data, called GICS-MMS, comprises a
set of cyber security attacks on MMS communication that were created manually
on the real-life communication provided by the G-ICS labs, University of Greno-
ble Alps, France (http://lig-g-ics.imag.fr). More details about the used dataset
can be found in [60]

Next, the developed AE-GRU-based andGAN-GRU-based 1SVM, iF, LOF,
and EE methods will be assessed using three diffrent datasets.

Case 1): cyber-attack detection in BUT-IEC104-I dataset The dataset
was created by Matousek et al. [30, 61] from Brno University of technology.
It provides traffic records from an actual smart grid that supports the indus-
trial network standards IEC 608705-104, commonly known as IEC 104 and IEC
61850. Traffic monitoring has been carried out using the IPFIX traffic moni-
tor. The captures consist of IPFIX flow added to application protocols headers.
The resulting data includes several traffic features: IP addresses, ports, object
id, and other derived characteristics (e.g., start and end times and quantity of
exchanged data). Besides the normal traffic, this dataset contains the following
scenarios with attacks.

– DOS attack against an IEC 104 control station: DOS attack has
intended to crash a control station and collapse the grid accordingly. The
attacker gets access using a spoofed IP address and floods the victim with
1049 messages in 30 minutes.

– Switching attack: A malware-based attack consists of switching on/off the
targeted devices. Within this attack, 72 packets were sent in an interval time
of 10 minutes.

– Injection commands attacks: in this case, the attacker manipulates a
connected device, then changes its settings or inserts false commands to
generate unusual actions and eventually creates different sorts of anomalies.
Two scenarios of 5 and 15 minutes in which 83 and 221 packets were injected,
respectively.

– Connection loss attacks: In this case, the attacker tries to disconnect tar-
geted devices and break down the attached communications. Two scenarios
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were implemented. In the first one, connection loss during 10 minutes re-
sulted in 146 missing packets. In the second scenario, connection loss for one
hour, causing losses of packets.

– Rogue devices attack: this attack takes place when unauthorized devices
are attributed to the communication network, allowing them to share random
messages with legitimate devices, which can also cause in random responses
and unpredicted actions, which are generally destructive. The dataset in-
cludes an attack of 30 minutes, generating 417 messages.

At first, the models were trained based on training data. The training data con-
tains normal IEC 104 communication without attacks; it contains 58930 packets
recorded in 2 days and 19:55 hours of traffic. At each time point, the extracted
from the IEC 104 packet contains 16 features of traffic variables, including source
IP address, destination IP address, source port, destination port, and destina-
tion port. The values of the tuned parameters of the trained models are listed
in Table 1. All the hyper-parameters are computed during the models training
by the minimization of the cross-entropy of the reconstructed error.

Table 1: Hyper-parameters used for the experiment.
Model parameter value

Input features 9
activation function ReLu

loss function Cross Entropy
Optimizer Rmsprop
Epoch 300

Batch size 250
Timesteps 12

AE-GRU & GAN-RNN
Encoder Layers 3

layer1 GRU(units=128)
layer2 GRU(units=16)
layer3 Dense(units=Features)

Decoder layers
layer1 Dense(units=Features)
layer2 GRU(units=16)
layer3 GRU(units=128)

iF contamination 0.01
estimators 150

LOF contamination 0.01
novelty TRUE

EE contamination 0.01
support fraction 0.995

1SVM kernel RBF
ν 0.0015
γ 0.25
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Detection results of the proposed AE-GRU and GAN-GRU-based intrusion
detection methods when applied to the but-iec104-i dataset are listed in Tables 2
and 3, respectively. The adopted anomaly detection approaches are trained us-
ing the features space of normal data, and testing data contain both normal
traffic with different attacks. For the DOS attack, Table 2 indicates that the
AE-GRU-based EE method recorded the best performance, while the AE-GRU-
based 1SVM comes in the second place with an F1-score of 0.9968, followed by
the AE-GRU-iForest with an F1-score of 0.9052. The AE-GRU-LOF scores the
best detection score for the Switching attack with an F1-score of 0.942, followed
by the AE-GRU-iForest with an F1-score of 0.9404. Here, the AE-GRU-EE de-
tection performance reaches an F1-score of 0.9281. Results in Table 2 show that
the injection attack has been detected by all adopted anomaly detection methods
with an F1-score around 0.98. The AE-GRU-EE method dominates the other

Table 2: AE-GRU-based anomaly detection schemes using but-iec104-i dataset.
Attack Method Accuracy Precision Recall F1-score

DOS iForest 0.8875 1 0.8269 0.9052
DOS LOF 0.65 0.65 1 0.7879
DOS 1SVM 0.9958 1 0.9936 0.9968
DOS EE 1 1 1 1

Switch iForest 0.8903 0.9856 0.8991 0.9404
Switch LOF 0.8945 1 0.8904 0.942
Switch 1SVM 0.1181 1 0.0833 0.1538
Switch EE 0.8692 0.9852 0.8772 0.9281

Injection iForest 0.9619 1 0.9616 0.9804
Injection LOF 0.9619 1 0.9616 0.9804
Injection 1SVM 0.9771 1 0.977 0.9884
Injection EE 0.9619 1 0.9616 0.9804

ConnLoss iForest 0.8017 0.9789 0.8158 0.8899
ConnLoss LOF 0.9052 1 0.9035 0.9493
ConnLoss 1SVM 0.3103 1 0.2982 0.4594
ConnLoss EE 0.931 0.9818 0.9474 0.9643

Rogue Dev iForest 0.9853 1 0.9808 0.9903
Rogue Dev LOF 0.9853 1 0.9808 0.9903
Rogue Dev 1SVM 0.9951 1 0.9936 0.9968
Rogue Dev EE 0.7647 0.7647 1 0.8667

models for detecting connection loss attacks with an F1-score of 0.9643. AE-
GRU-based LOF and iForest follow it by reaching, respectively, F1-score values
of 0.9493 and 0.9493. Moreover, the AE-GRU-1SVM scheme provides the best
detection for Rogue Devices attacks with an F1-score of 0.9968, while the AE-
GRU-based iForest and LOF schemes provide comparable performance with an
F1-score of 0.9903. Of course, we noticed that the AE-GRU-1SVM scheme is
providing poor results for both switching and connection loss attacks even after
tuning its hyper-parameters ν and γ, which are very sensitive and impact the
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detection, in contrast to the other methods where the most important parameter
is the contamination that indicates the percentage of abnormal data (outliers)
used during the training.

From Table 3, there is not a single model that is uniformly superior to others.
We observe that GAN-GRU-based iForest and LOF schemes reach satisfactory
detection performance for the five considered attacks. For instance, the GAN-
GRU-LOF scheme obtained the best performance for DOS attack detection with
0.9936, followed by the GAN-GRU-EE scheme with an F1-score of 0.987 and
One-Class SVM with 0.9315. It is worth noting that combining the proposed
hybrid models with anomaly detection methods provides a promising tool in
detecting attacks in ICS traffic of smart grids.

Table 3: GAN-GRU adopted anomaly detection schemes using but-iec104-i
dataset.

Attack Method Accuracy Precision Recall F1-score

DOS iForest 0.8 1 0.6923 0.8182
DOS LOF 0.9917 1 0.9872 0.9936
DOS 1SVM 0.9167 1 0.8718 0.9315
DOS EE 0.9833 1 0.9744 0.987

Switch iForest 0.8439 0.9848 0.8509 0.913
Switch LOF 0.9873 1 0.9868 0.9934
Switch 1SVM 0.1814 1 0.1491 0.2595
Switch EE 0.9789 0.9869 0.9912 0.989

Injection iForest 0.9553 0.9932 0.9616 0.9771
Injection LOF 0.9891 1 0.989 0.9945
Injection 1SVM 0.0229 1 0.0164 0.0323
Injection EE 0.9826 1 0.9825 0.9912

ConnLoss iForest 0.7069 1 0.7018 0.8248
ConnLoss LOF 0.9052 1 0.9035 0.9493
ConnLoss 1SVM 0.8194 1 0.8158 0.8986
ConnLoss EE 0.9677 0.9804 0.9868 0.9836

Rogue Dev iForest 0.9853 1 0.9808 0.9903
Rogue Dev LOF 0.7549 0.7624 0.9872 0.8604
Rogue Dev 1SVM 0.25 1 0.0192 0.0377
Rogue Dev EE 0.7549 0.7624 0.9872 0.8604

To conclude the assessment of the proposed AE-GRU and GAN-GRU-based
intrusion detection schemes when applied to the but-iec104-i dataset, Table 4
lists the averaged evaluation scores for each scheme. Results show that combin-
ing the proposed hybrid deep learning models with anomaly detection methods
provides a promising tool for monitoring ICS traffic flow without using labeled
data. It can be seen that the GAN-GRU-based LOF and EE schemes domi-
nate the other models by reaching an F-score of 0.96. They are followed by the
AE-GRU-based EE scheme with an F-score of 0.96.
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Table 4: Avreaged performance of AE-GRU and GAN-GRU-based methods us-
ing but-iec104-i dataset.

Method Accuracy Precision Recall F1-score

AE-GRU-iForest 0.91 0.99 0.90 0.94

AE-GRU-LOF 0.90 0.94 0.95 0.94

AE-GRU-1SVM 0.68 1.00 0.67 0.72

AE-GRU-EE 0.91 0.95 0.96 0.95

GAN-GRU-iForest 0.86 1.00 0.84 0.90

GAN-GRU-LOF 0.93 0.95 0.97 0.96

GAN-GRU-1SVM 0.44 1.00 0.37 0.43

GAN-GRU-EE 0.93 0.95 0.98 0.96

Case 2): cyber-attack detection in G-ICS dataset The second experi-
ment evaluates the proposed cyber-attack detection schemes using the G-ICS
created University of Grenoble Alps, France. The G-ICS data contains a set of
cyber security attacks on MMS communication, including lost connection, injec-
tion, scanning, and interrupt attacks. In addition, this data comprises normal
communication data, which is used for training the proposed models.

The data contains two lost connections, with 58 missing packets in the first
and 63 missing packets in the second. The data include scanning attacks, also
known as reconnaissance attacks, which are performed to obtain necessary infor-
mation about network topology and components. Here, the attack was launched
at 07:50:41,51 and ended at 07:53:01:51. In the G-ICS, We find also interrupt
attacks, where an attacker tries to interrupt MMS services, and modification
attacks, where an attacker tries modifying packets.

Tables 5 and 6 shows detection results obtained by AE-GRU and GAN-GRU-
based anomaly detection schmes using G-ICS dataset. As can be seen in Table 5,
for the modification attacks, the AE-GRU-1SVM achieved the best performance,
followed by the AE-GRU-iForest with an F-score of 0.9735 and the AE-GRU-
EE with an F-score of 0.9547, while the AE-GRU-LOF recorded an F1-score of
0.9167. The AE-GRU-EE recorded the best performance for the connection loss
attack with an F1-score of 0.9915, followed by the AE-GRU-based iForest and
LOF schemes with an F1-score of 0.9783, and 0.9646, respectively. In contrast,
the AE-GRU-1SVM did not record a good performance, with an F1-score of
0.7579. However, for scan resources attack, all adopted methods have recorded
a high F1-score greater than 0.97, except the AE-GRU-EE with 0.9204. For
injection attack detection, AE-GRU-EE dominates the other detectors. It is
followed by the AE-GRU-based 1SVM, LOF, and iForest schemes with F1-score
values of 0.9839, 0.9043, and 0.8333, respectively. Similar conclusions hold true
also when using the GAN-GRU-based anomaly detection schemes (Table 6).
There is no single approach dominating all models for the considered attacks.

As shown above, no unique approach is uniformly superior to others in de-
tecting different attacks. Table 7 presents the aggregated performances of each
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Table 5: AE-GRU adopted anomaly detection approaches using GICS dataset.
Attack Method Accuracy Precision Recall F1-score

Modification iForest 0.9538 1 0.9483 0.9735
Modification LOF 0.8462 0.8871 0.9483 0.9167
Modification 1SVM 1 1 1 1
Modification EE 0.9154 0.9134 1 0.9547

ConnLoss iForest 0.9576 0.9912 0.9658 0.9783
ConnLoss LOF 0.9322 1 0.9316 0.9646
ConnLoss 1SVM 0.6102 0.9863 0.6154 0.7579
ConnLoss EE 0.9831 0.9915 0.9915 0.9915

scanning iForest 0.9524 1 0.9483 0.9735
scanning LOF 0.9524 0.9508 1 0.9748
scanning 1SVM 0.9524 0.9508 1 0.9748
scanning EE 0.8571 0.9455 0.8966 0.9204

Injection iForest 0.7273 1 0.7143 0.8333
Injection LOF 0.8333 1 0.8254 0.9043
Injection 1SVM 0.9697 1 0.9683 0.9839
Injection EE 1 1 1 1

Table 6: GAN-RNN adopted anomaly detection approaches using GICS dataset.
Attack Method Accuracy Precision Recall F1-score

ConnLoss iForest 0.6695 0.9875 0.6752 0.802
ConnLoss LOF 0.8898 1 0.8889 0.9412
ConnLoss 1SVM 0.7881 1 0.7863 0.8804
ConnLoss EE 0.9831 0.9915 0.9915 0.9915

Injection iForest 0.8485 1 0.8413 0.9138
Injection LOF 0.9545 0.9545 1 0.9767
Injection 1SVM 0.9545 1 0.9524 0.9756
Injection EE 1 1 1 1

scanning iForest 0.9206 1 0.9138 0.955
scanning LOF 0.9048 0.9483 0.9483 0.9483
scanning 1SVM 0.9841 0.9831 1 0.9915
scanning EE 0.9365 0.9355 1 0.9667

Modification iForest 0.8231 1 0.8017 0.8899
Modification LOF 0.8769 1 0.8621 0.9259
Modification 1SVM 0.9692 0.9667 1 0.9831
Modification EE 0.9769 0.9748 1 0.9872

cyber-attack detection scheme. In terms of all evaluation scores computed, the
GAN-GRU-EE scheme is the best approach to detect attacks that occurred in
the G-ICS dataset with high efficiency by obtaining an averaged F1-score of
0.99. It is followed by the AE-GRU-EE scheme with an averaged F1-score of
0.97. It could be due to the capability of the hybrid deep learning models (i.e.,
AE-GRU and GAN-GRU) to extract relevant features from ICS traffic data and
the sensitivity of the anomaly detection method. Overall, we should highlight
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the potential of merging hybrid deep learning models with anomaly detection
methods in detecting cyber-attacks in ICS traffic flow.

Table 7: Avreaged performance of AE-GRU and GAN-GRU-based methods us-
ing G-ICS dataset.

Method Accuracy Precision Recall F1-score

AE-GRU-iForest 0.90 1.00 0.89 0.94

AE-GRU-LOF 0.89 0.96 0.93 0.94

AE-GRU-1SVM 0.88 0.98 0.90 0.93

AE-GRU-EE 0.94 0.96 0.97 0.97

GAN-GRU-iForest 0.82 1.00 0.81 0.89

GAN-GRU-LOF 0.91 0.98 0.92 0.95

GAN-GRU-1SVM 0.92 0.99 0.93 0.96

GAN-GRU-EE 0.97 0.98 1.00 0.99

These results prove that the amalgamation of the hybrid deep learning mod-
els with anomaly detection methods provided satisfactory results in identifying
cyber-attacks in ICS traffic flow.

Case 3): cyber-attack detection in vrt-iec104 dataset The final experi-
ment aims to assess the potential of the proposed technique in detecting various
attacks on IEC 104 communication created using the IEC virtual testbed de-
veloped by Peter Grofcik at Brno University of Technology [60]. Since IEC 104
packets may include multiple APDUs (application protocol data units) and AS-
DUs (application service data units), the IPFIX probe separates these packets
into so-called virtual IEC 104 packets used for further analysis. The dataset was
captured at the HMI side in the topology [60]. The propose models have been
trained using three days of normal communication data with no attacks (i.e.,
total of 381.666 virtual packets). Then, we assessed the trained models using
data with different types of attacks, including report-block-HMI attacks, HMI-
MITM attacks, reply-HMI attacks, value-change-HMI attacks,and masquerating
attacks. More details about the considered attacks can be find in the readme file
in [60].

Table 8 reports the detection results of the AE-GRU-based anomaly detec-
tion methods when applied to the vrt-iec104 dataset. Results indicate the AE-
GRU-LOF recorded the highest detection accuracy for detecting Command Act
attacks, with an F1-score of 0.9831; it is followed by the AE-GRU-EE scheme
with an F1-score of 0.9565. For the other attacks, we observe that the AE-GRU-
based EE and LOF schemes recorded the highest F1-score greater than 0.95,
while the other methods did perform well.

Table 9 lists detection results of the GAN-GRU-based anomaly detection
schemes using the vrt-iec104 dataset. We observe that GAN-GRU-based iForest



Title Suppressed Due to Excessive Length 21

Table 8: AE-GRU adopted anomaly detection approaches using vrt-iec104
dataset.

Attack Method Accuracy Precision Recall F1-score

command Act iForest 0.7396 0.7188 0.9583 0.8214
command Act LOF 0.9792 1 0.9667 0.9831
command Act 1SVM 0.5729 0.6092 0.8833 0.7211
command Act EE 0.9479 1 0.9167 0.9565

Modification iForest 0.1282 0.1239 0.975 0.2199
Modification LOF 0.9958 1 0.9667 0.9831
Modification 1SVM 0.0987 0.1006 0.775 0.1781
Modification EE 0.9958 1 0.9667 0.9831

block-HMI iForest 0.4579 0.124 0.95 0.2194
block-HMI LOF 0.9973 1 0.9667 0.9831
block-HMI 1SVM 0.0608 0.0614 0.75 0.1135
block-HMI EE 0.9973 1 0.9667 0.9831

replaying HMI iForest 0.2989 0.0933 0.9417 0.1698
replaying HMI LOF 0.9975 1 0.9667 0.9831
replaying HMI 1SVM 0.0647 0.0638 0.825 0.1184
replaying HMI EE 0.9937 1 0.9167 0.9565

replaying RTU iForest 0.3438 0.2452 0.95 0.3898
replaying RTU LOF 0.9926 1 0.9667 0.9831
replaying RTU 1SVM 0.3768 0.2459 0.8833 0.3847
replaying RTU EE 0.9798 1 0.9083 0.9519

change of HMI iForest 0.1571 0.1064 0.9583 0.1915
change of HMI LOF 0.9965 1 0.9667 0.9831
change of HMI 1SVM 0.2335 0.0928 0.725 0.1645
change of HMI EE 0.9913 1 0.9167 0.9565

change of RTU iForest 0.2478 0.0997 0.95 0.1805
change of RTU LOF 0.9971 1 0.9667 0.9831
change of RTU 1SVM 0.077 0.0778 0.8833 0.143
change of RTU EE 0.9964 1 0.9583 0.9787

masquerating iForest 0.3289 0.0497 0.9417 0.0944
masquerating LOF 0.9985 1 0.9583 0.9787
masquerating 1SVM 0.2067 0.0282 0.6083 0.0539
masquerating EE 0.9966 1 0.9083 0.9519

and LOF schemes recorded the highest F1-score of 9831 compared to GAN-
GRU-based 1SVM and EE schemes that achieved an under 0.78 which is not
satisfactory. For the Changes value and replaying HMI attacks, the GAN-GRU-
LOF was the only method that satisfactory detected this kind of attack with
an F1-score of 0.9831. The GAN-GRU-LOF reached the best performance with
an F1-score of 0.9831 regarding the attack replaying RTU; after that comes the
GAN-GRU-1SVM with an F1-score of 0.806. In contrast, the other methods
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could not detect this kind of attack properly. The same performance detection
was recorded for the attacks: masquerading, change of HMI, and change of RTU,
where the GAN-GRU-LOF scheme is the only able to detect the attacks with
an F1-score of 0.9831.

Table 9: GAN-RNN adopted anomaly detection approaches using vrt-iec104
dataset.

Attack Method Accuracy Precision Recall F1-score

command Act iForest 0.9792 1 0.9667 0.9831
command Act LOF 0.9792 1 0.9667 0.9831
command Act 1SVM 0.7188 0.7845 0.7583 0.7712
command Act EE 0.5885 0.6108 0.9417 0.741

changes Value iForest 0.3792 0.1612 0.9333 0.2749
changes Value LOF 0.9958 1 0.9667 0.9831
changes Value 1SVM 0.6029 0.1943 0.6833 0.3026
changes Value EE 0.1786 0.1247 0.9167 0.2195

block-HMI iForest 0.996 1 0.95 0.9744
block-HMI LOF 0.9973 1 0.9667 0.9831
block-HMI 1SVM 0.9646 1 0.5583 0.7166
block-HMI EE 0.9967 1 0.9583 0.9787

replaying HMI iForest 0.5615 0.1418 0.9417 0.2465
replaying HMI LOF 0.9975 1 0.9667 0.9831
replaying HMI 1SVM 0.8598 0.2735 0.5083 0.3556
replaying HMI EE 0.1523 0.0766 0.9167 0.1414

replaying RTU iForest 0.3989 0.2653 0.975 0.4171
replaying RTU LOF 0.9926 1 0.9667 0.9831
replaying RTU 1SVM 0.9283 1 0.675 0.806
replaying RTU EE 0.204 0.2075 0.925 0.339

change of HMI iForest 0.2101 0.1143 0.975 0.2046
change of HMI LOF 0.9965 1 0.9667 0.9831
change of HMI 1SVM 0.9158 0.5804 0.6917 0.6312
change of HMI EE 0.3168 0.129 0.9667 0.2276

change of RTU iForest 0.96 1 0.5417 0.7027
change of RTU LOF 0.9971 1 0.9667 0.9831
change of RTU 1SVM 0.915 0.5101 0.6333 0.5651
change of RTU EE 0.2515 0.1016 0.9667 0.1839

masquerating iForest 0.9817 1 0.5083 0.674
masquerating LOF 0.9988 1 0.9667 0.9831
masquerating 1SVM 0.9202 0.1835 0.3333 0.2367
masquerating EE 0.1064 0.0387 0.9667 0.0744

From results in Tables 8 and 9, the main finding is that AE-GRU and GAN-
GRU-based LOF schemes have maintained a high detection performance for all
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attacks. Moreover, the remaining methods could not keep a high detection accept
for the block of HMI.

Table 10: Avreaged performance of AE-GRU and GAN-GRU-based methods
using vrt-iec104 dataset.

Method Accuracy Precision Recall F1-score

AE-GRU-iForest 0.34 0.20 0.95 0.29

AE-GRU-LOF 0.99 1.00 0.97 0.98

AE-GRU-1SVM 0.21 0.16 0.79 0.23

AE-GRU-EE 0.99 1.00 0.93 0.96

GAN-GRU-iForest 0.68 0.59 0.85 0.56

GAN-GRU-LOF 0.99 1.00 0.97 0.98

GAN-GRU-1SVM 0.85 0.57 0.61 0.55

GAN-GRU-EE 0.35 0.29 0.94 0.36

Table 11 displays the aggregated performances of each approach based on
the three considered datasets. We can see that the AE-GRU and GAN-GRU-
based LOF schemes achieved the best detection performance of all attacks, with
an F1-score of 0.98. They dominate the other investigated deep learning-based
anomaly detection methods.

Table 11: Avreaged performance of AE-GRU and GAN-GRU-based methods
using the three datasets.

Method Accuracy Precision Recall F1-score

AE-GRU-iForest 0.34 0.20 0.95 0.29

AE-GRU-LOF 0.99 1.00 0.97 0.98

AE-GRU-1SVM 0.21 0.16 0.79 0.23

AE-GRU-EE 0.99 1.00 0.93 0.96

GAN-GRU-iForest 0.68 0.59 0.85 0.56

GAN-GRU-LOF 0.99 1.00 0.97 0.98

GAN-GRU-1SVM 0.85 0.57 0.61 0.55

GAN-GRU-EE 0.35 0.29 0.94 0.36

5 Conclusion

Accurately detecting attacks in ICS communication networks is undoubtedly
necessary for designing modern smart grids and ensuring safe and reliable op-
eration. This chapter introduced data-driven anomaly detection approaches for
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intrusion detection in a smart grid environment by monitoring ICS traffic com-
munication. At first, we designed two-hybrid deep learning models, AE-GRU
and GAN-GRU, by integrating AE and GRU’s desirable characteristics with the
GRU model’s capacity to capture the time-dependence in ICS traffic data. Then,
these two models have been combined with semi-supervised anomaly detection
techniques to design semi-supervised deep recurrent-based anomaly detection
schemes for ICS communication monitoring in smart grids. The AE-GRU and
GAN-GRU models aim to automatically learn and capture the relevant features
from ICS traffic flow, and the anomaly detection schemes (i.e., iForest, LOF,
1SVM, and EE) are applied to extracted features to detect cyber-attacks based.
Three publically available datasets are used to assess the performance of the
proposed approaches. Four statistical scores have been utilized to judge the de-
tection accuracy of the studied methods, including accuracy, precision, recall,
and F1-score. Results revealed that the proposed AE-GRU-based EE and LOF
methods offer superior detection performance of different cyber-attack types and
dominate the other investigated methods.

Despite the improved detection performance of the proposed semi-supervised
deep learning-based techniques for detecting anomalies in ICS traffic on the IEC
104 communication, future works will be aimed to extend further the range of
their application to monitor ICS communication of industrial systems. Further,
we plan to improve the robustness of the hybrid deep learning models (AE-GRU
and GAN-GRU) to noisy measurements by developing a wavelet-based hybrid
deep learning detector. To this end, we will use wavelet decomposition to capture
multivariate information in the time and frequency domains and then employ
a hybrid deep learning model to extract relevant features that will be fed to
the anomaly detection methods for cyber-attack detection. It is expected that
by applying wavelet-based multiscale denoising to the received signals, noise
effects will be reduced, thus improving cyber-attack detection. Another interest-
ing direction for future work is the design of unsupervised cyber-attack detection
strategy by integrating unsupervised deep learning methods as features extrac-
tors, such as deep variational auto-encoder [62], with the sensitivity of statistical
monitoring charts, such as Generalized Likelihood Ratio Test [63].
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