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Abstract—Electric vehicles (EVs) offer low carbon emissions;
however, drivers frequently encounter difficulties scheduling
charging sessions and locating available Charging Stations (CSs).
These stations not only need to be conveniently located but
also tailored to meet individual charging preferences. Address-
ing these challenges is crucial for overcoming barriers to the
widespread adoption and efficiency of electric mobility, con-
sequently enhancing the overall user experience. This paper
introduces an innovative two-stage framework that improves the
accessibility of EVCSs by integrating Graph Neural Networks
(GNNs) with optimization algorithms. A bipartite graph repre-
senting user-station interactions is constructed in the first stage,
and a GNN is utilized to leverage this structure. The GNNs
efficiently capture complex relational patterns within the graph,
enabling the generation of personalized station recommendations.
In the subsequent stage, an optimization algorithm is employed
to strategically assign users to these recommended stations. This
algorithm considers station availability and proximity factors,
ensuring optimal user assignments. The proposed recommender
framework’s effectiveness is verified using data collected from the
Yonne department in France. Experimental evaluations highlight
the framework’s efficiency, achieving a high-performance mea-
sure of 98%, significantly reducing waiting times and maximizing
user satisfaction for drivers compared to baseline approaches.

Index Terms—Charging Stations, Bipartite Graphs, Graph
Neural Networks, Deep Learning, Optimization Algorithms

I. INTRODUCTION

The growing adoption of Electric Vehicles (VEs) within the
automotive industry and the urgent need for decarbonization
strategies pave the way for EVs to replace fossil fuel-driven
counterparts. In Europe, EV sales continued to rise by over
15% in 2022 compared to the previous year, culminating in
a total of 2.7 million units sold [1]. This upward trajectory
underscores the mounting demand for EV charging infrastruc-
ture. Nevertheless, users frequently face challenges in find-
ing Charging Stations (CSs) that meet their charging habits,
proximity, and availability. Consequently, manufacturers are
intensifying their efforts to optimize the charging experience
for drivers and enhance charging efficiency. Implementing a
personalized CS recommender system is indispensable for EV
adoption and transitioning from traditional gasoline-based ve-
hicles to electric mobility. Such a system is pivotal in enhanc-
ing the overall charging experience by making it convenient
and tailored to individual needs and preferences, reinforcing
consumer confidence in the transition to EVs.

In the existing literature, several studies have addressed the
challenge of locating CSs or providing intelligent charging
recommendations [2–4]. These methods suggest the most
appropriate CS for an EV driver based on various real-time
factors (e.g., State of Charge (SoC) and traffic data). However,
a limitation of these systems is their failure to account for
the charging behavior of users or their individual preferences.
Charging an EV differs from refueling a traditional gasoline
vehicle, as it involves longer durations and varying power
needs. Thus, personalized recommendations considering user
charging habits and preferences are essential for enhancing
the charging experience, as they recognize the varying con-
venience and feasibility of charging options among users.
This research utilizes recent advancements in Graph Neural
Networks (GNNs) to effectively analyze graph-based data, ad-
dressing the complex optimization challenge of recommending
the most appropriate CSs. It introduces a two-stage solution
where the first stage involves utilizing GNNs to model and
learn users’ historical charging behaviors, and the second stage
implements an optimization algorithm similar to those used
in warehouse logistics. This algorithm uses real-time data to
allocate users to CSs efficiently. This two-stage framework
meets personalized user demands and improves the overall
efficiency of CS utilization.

The main contributions of this paper are:

• The EV charging recommendation problem is formulated
as a two-stage framework. The first stage involves pro-
cessing a user-CS bipartite graph with a GNN due to its
superiority in graph representation learning. This enables
the generation of initial personalized recommendations,
enhancing the user experience by customizing sugges-
tions to reflect past charging patterns and preferences.

• The second stage of the framework first predicts the avail-
ability of CSs. Then, it uses an optimization algorithm
to efficiently assign users to these stations based on CS
availability, vehicle SoC, and travel distance, ensuring
optimal charging infrastructure utilization.

• The effectiveness of the proposed two-stage framework
is thoroughly tested and validated using a real-world
dataset from Yonne, France. Its efficacy is rigorously
evaluated against baseline methods across various met-
rics, highlighting the framework’s robustness and superior



performance in recommending CSs.
The remainder of the paper is structured as follows. Sec-

tion II provides an overview of the literature concerning CS
recommendation and assignment. Section III introduces the
two-stage modeling approach, which uses a bipartite GNN
followed by an optimization algorithm. Section IV outlines
the details of conducted experiments and presents the obtained
results. Finally, Section V offers concluding remarks and
proposes directions for future research.

II. RELATED WORK

With the rise of EV adoption, significant scholarly attention
has focused on efficiently recommending CSs for drivers,
categorized into traditional optimization methods and Artificial
Intelligence (AI)-based approaches.

Ferro et al., in their work [5], developed a comprehensive
optimization model for electric bus fleet CSs that addresses
site selection, station sizing, line assignment, and fleet sizing
while ensuring service quality with a hybrid nonlinear plan-
ning approach. Adachi et al. in [4] utilized a decentralized
approach where EVs select a CS and paths via a linear
integer programming problem and a Lagrangian relaxation
heuristic, resulting in fair allocations and emphasizing the
importance of waiting and charging times over travel time.
In [6], researchers proposed an EV assignment algorithm
based on the Lyapunov optimization method, comparing it to
strategies such as assignment to the nearest station and join-
the-shortest-queue policy.

Recent advancements in Deep Reinforcement Learning
(DRL) for sustainable EV charging have significantly in-
creased. Authors in [7] proposed a DRL-based algorithm
for optimal route and CS selection to minimize the total
travel time of EVs by considering uncertain traffic conditions
and dynamic charging requests, comparing its performance
against conventional strategies across various scenarios. A
framework developed in [8] intelligently recommends public
CSs using long-term spatiotemporal factors and outperforms
nine baseline approaches, as demonstrated by experiments on
real-world datasets. Peidong et al. in [9] presented a fast CS
recommendation platform using DRL and Graph Attention
Networks (GATs) to integrate information from CSs, traffic
nodes, and power grid buses into a graph. This system dynam-
ically allocates EVs to suitable CSs, addressing the evolving
demands and complexities of coupled power-transportation
networks in urban settings. Simulation results using SUMO
demonstrate efficient handling of real-time requests. Another
investigation has introduced a Spatio-Temporal Multi-Agent
Reinforcement Learning (STMARL) framework to optimize
public-accessible CSs, aiming to reduce charging wait time,
average price, and failure rate. Its effectiveness is evaluated
by comparing it to random selection systems [3].

Although these studies offer valuable insights into rec-
ommending CSs, many must pay more attention to users’
preferences and charging behaviors. Charging preferences are
essential; many EV drivers may be more likely to conform
to their charging habits when making charging choices [10].

Fig. 1: Architecture of the proposed recommendation system.

Therefore, understanding user preferences, such as preferred
charging times and location preferences, is crucial for pro-
viding personalized and effective charging recommendations.
This study aims to develop a recommender system by ad-
dressing the EV charging demand from two perspectives: user
charging preferences and optimizing charging assignment.

III. SYSTEM MODEL

This section presents the proposed framework, modeling the
system as a bipartite graph of driver and CS nodes. A GNN
projects these nodes into distinct feature spaces to capture
intricate relationships, generating embeddings for both users
and CSs. The GNN architecture implementation is detailed,
explaining how it learns features and relationships for each
node type. Additionally, an optimization algorithm named
CS Linear Programming (CSLP) is developed to efficiently
assign users to optimal CSs by minimizing travel distance and
considering predicted CS availability. Figure 1 illustrates the
integrated architecture of the system.

A. Preliminaries
The User-CS bipartite graph is a quadruple G =

(U,CS,E, S) constructed from charging sessions dataset (see
Section IV-A), where users U = u1, u2, ..., uM and CSs
CS = cs1, cs2, ..., csN are two sets of vertices. Each vertex
in the sets U and CS is associated with weights denoting
certain characteristics and denoted as wu and wcs, respectively.
The graph compromises a set of edges E, each denoted
by e = (um, csn)|um ∈ U, csn ∈ CS, symbolizing instances
where a user um utilizes a specific CS csn for charging
his vehicle. These edges are associated with weights S(e)
to denote the connection strength. An edge (um, csn) exists
if a user um uses station csn at least once in the charging
history, with its weight encoding multifaceted aspects like
charging duration, energy consumption, session initiation time,
and price of energy. Hence, it reflects the dynamic user-station
interaction within the network. The prediction aims to learn
a function between a user um and a CS csn, enabling the
prediction of the probability that csn will be utilized by um.

B. Bipartite Graph Recommendations
The proposed model, named BipartiteSAGE, is a data-

efficient GNN training framework inspired by existing Graph-
SAGE (SAmple and aggreGatE) known for its effectiveness
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Fig. 2: Illustration of GraphSAGE message passing: 1) Neigh-
borhood sampling selects immediate and extended neigh-
bors of a target node. 2) Features from these neighbors are
aggregated in successive layers. 3) The target node’s final
embedding is obtained by combining its features with the
aggregated neighborhood features (inspired by [11]).

in learning representations for time-evolving graphs [11]. The
intuition behind the BipartiteSAGE is to iteratively aggregate
information between the user and CS neighbors, allowing
vertices to accumulate insights from distant parts of the graph
gradually. It samples fixed-size neighborhoods for each node
and uses learnable aggregation functions such as mean, sum,
or max-pooling, ensuring adaptability without relying on the
complete graph Laplacian. Figure 2 illustrates GraphSAGE
message passing, which uses neighborhood sampling to ef-
ficiently manage computational graphs, enhancing GPU effi-
ciency. This method scales to billions of nodes and generalizes
unseen nodes without requiring the entire graph structure
during training. Let N(v) be the neighborhood of node v in
G, the mean aggregation function used is defined as:

hk
v = σ

(
W k · MEAN

(
{hk−1

v } ∪ {hk−1
u ,∀u ∈ N(v)}

))
(1)

where hk
v is the feature vector of node v at the k-th iteration, σ

denotes the activation function, and W k is the weight matrix
at the k-th layer.

The proposed BipartiteSAGE employs the aggregator func-
tion outlined in Equation 1 to learn node embeddings by
leveraging features from neighboring nodes in a bipartite
user-station graph. This neighborhood-based training enables
the GNN to generate embeddings for unseen nodes during
inference. Subsequently, it inputs the learned embeddings
of users and CSs, concatenated with their respective linear
transformations and embeddings, to predict links between
nodes. This process facilitates the generation of top-N station
recommendations for users based on their historical use.

C. Optimization Algorithm for User-Station Assignment

After training the GNN model to capture user charging
behaviors, it predicts a set of CSs for each user. In a real-
world scenario, users submit requests for charging demand
at time t, prompting the need for efficient assignment to the
recommended CSs. Figure 1 illustrates this second stage of the
problem, where a finite set N of CSs constitutes the charging
infrastructure, represented as CS = cs1, cs2, ..., csN . Each
station csi is defined by two parameters: a fixed location

represented by loc(csi) and an availability indicator. Con-
versely, the vehicle’s location and SoC characterize each EV
user request to charge. This problem integrates complexities
reminiscent of warehouse optimization. It falls into the cate-
gory of Integer Linear Programming (ILP) problems, where
the decision maker (e.g., Charging Station Operator) must
assign an incoming user to the most suitable CS, aiming
to minimize the total waiting time, which encompasses both
travel time to the station and waiting time until the station
becomes available, as depicted in Figure 1. The discrete set
of time steps is defined as T = t1, t2, ..., tk. The dynamic
availability of station cs ∈ CS at time t ∈ T is denoted by
Acs,t. It’s obtained from a trained Deep Learning model [12],
where Acs,t = 0 indicates that the station is available and
Acs,t = 1 indicates otherwise.

The travel time of user u ∈ U to station cs ∈ CS is
represented by Cu,cs. The decision variable is defined as:

Xu,cs,t =

{
1 if user u is assigned to station cs at time t,

0 otherwise.
(2)

The objective is to minimise the total waiting time for all users,
formalized as follows:

min
∑
u∈U

∑
cs∈CS

∑
t∈T

Xu,cs,t · (Cu,cs + t) (3)

The constraints for the assignment problem are:
• Each user is assigned to exactly one station at one time

step. ∑
cs∈CS

∑
t∈T

Xu,cs,t = 1, ∀u ∈ U (4)

• A user can be assigned to a station at time t only if the
station is available.

Xu,cs,t ≤ 1−Acs,t, ∀u ∈ U, cs ∈ CS, t ∈ T (5)

IV. EXPERIMENTAL SETUP AND RESULTS

This section outlines the experimental configuration and re-
sults of the two-stage framework. Initially, the dataset used and
the feature engineering conducted are detailed. Following this,
the model’s configuration and training process are presented.
Finally, a comprehensive performance analysis is conducted
using various metrics, and the obtained results are compared
with those of standard baseline methods.

A. Data Description

The evaluation dataset contains charging sessions recorded
in Yonne, France, from January 1 to December 31, 2023. This
dataset compromises 466,371 charging sessions from users
at 136 charging points. There are three types of CSs based
on their charging capacity: normal (≤25 kW), rapid (>25
kW), and ultra-rapid (≥100 kW) types. Specific attributes that
characterize the users and the CSs are extracted from the
dataset and utilized as node features (wu and wcs) within the
bipartite graph, as detailed in Table II. The edge features S(e)
were based on four parameters: charging session duration,
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energy consumption, start time, and price. The dataset was
split into 60% training, 20% testing, and 20% validation. The
system uses the Google Maps API to calculate travel times to
CSs for users, incorporating real-time traffic data.

TABLE I: Extracted data features.

User features CS features
Location Location

Average charging duration Total energy consumption
Average charging consumption Mean start time

Frequency of charging Average charging duration
Preferred charging station Average number of charging hourly

Most frequent charging time Number of charging sessions
Charging capacity

Number of nearby Points of Interest

B. Model Training

BipartiteSAGE model is implemented using PyG library1.
Initially, we re-implemented the existing SAGEConv class
from the PyG library to incorporate crucial edge features. The
model consists of four layers: a customized SAGEConv spatial
convolution module, batch normalization, and a dropout layer,
which generates node embeddings to capture complex node
relationships. These embeddings are processed by a multi-
layer perceptron (MLP) to predict user-station connections
accurately. The model is trained in batches of 32 examples
using an EarlyStopping mechanism to prevent overfitting.
We optimize with the Adam optimizer at a learning rate of
0.001, balancing convergence speed and model accuracy. This
approach ensures robust, detailed processing of bipartite graph
data for efficient CS recommendations.

C. Performance Evaluation

Metrics such as accuracy, recall, precision, and the Area
Under the Curve (AUC) [12] are computed to assess the
effectiveness of BipartiteSAGE. These results are compared to
those obtained using a GAT [13]. This analysis highlights each
model’s strengths and limitations in handling node interaction
complexities.

In the second stage, the CSLP optimization model allocates
users to recommended CSs, generating various scenarios with
differing user numbers, locations, and EV battery levels.
The efficiency of the optimization problem is validated by
measuring the Mean Waiting Time (MWT) for all scenarios,
defined as the sum of travel time to the station and waiting time
until availability. Additionally, user satisfaction is assessed
based on the accuracy of BipartiteSAGE recommendations.
The model’s performance is then benchmarked against three
baseline approaches:

• Genetic Algorithm: A genetic algorithm [14] is imple-
mented to solve this optimization problem.

• Nearest Assignment: A distance-based selection as-
sumes drivers will choose the closest CS regardless of
its current availability and user satisfaction.

• Random Assignment: Users are randomly assigned to
CSs.

1PyG: https://pytorch-geometric.readthedocs.io/en/latest/

Fig. 3: ROC curve on the test dataset.

D. Results & Analysis

Table II comprehensively evaluates the proposed Bipar-
titeSAGE and the baseline GAT across four metrics. Bipar-
titeSAGE demonstrates superior performance in all metrics,
achieving an accuracy of 95%, recall of 98.97%, precision of
93.84%, and an F1-score of 96.34%. BipartiteSAGE is par-
ticularly effective in accurately predicting user-station links,
reflecting historical charging behaviors. In contrast, GAT,
while still effective, shows lower scores with an accuracy of
77.69%, recall of 86.90%, precision of 77.78%, and an F1-
score of 82.09%. These results indicate that GAT may struggle
comparatively in precision and overall accuracy but maintains
a reasonably high recall, which suggests effectiveness in
identifying positive instances. Figure 3 presents the Receiver
Operating Characteristic (ROC) curve analysis. BipartiteSAGE
achieves an AUC of 98%, outperforming GAT, which has an
AUC of 87%. BipartiteSAGE demonstrates higher TPR and
lower FPR, indicating its superior performance in learning the
underlying patterns of user behavior and station characteristics.
The message-passing technique focuses on the most relevant
local information around each node to predict the CSs a user
would be interested in for charging his vehicle.

TABLE II: Evaluation metrics on the test dataset.

Accuracy Recall Precision F1-score
BipartiteSAGE 0.9557 0.9897 0.9384 0.9634

GAT 0.7769 0.8690 0.7778 0.8209

Figure 4 visually compares the MWT across various sce-
narios for four assignment strategies. It shows that CSLP out-
performs with the lowest median MWT, and its mean closely
mirrors the median, indicating a balanced distribution around
the center and efficiency in optimization. Genetic follows
as the second most effective, with a comparable median to
CSLP but more variability. The Nearest method results in the
highest MWT with less variability than Random, which, while
not as extreme as Nearest, suffers from inconsistent results,
suggesting significant variability and less predictability.

Overall, the results suggest that strategies like CSLP and
Genetic, incorporating predicted station availability into their
algorithms, are more effective in minimizing user waiting
times. Given the system’s small size, CSLP outperforms the
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Fig. 4: Boxplot of MWT as a function of assignment strategy.

Fig. 5: Distribution of users satisfaction probabilities.

metaheuristic Genetic algorithm, offering optimal and con-
sistent solutions with lower computational demand, making
it the preferable choice for reliable user-to-CS assignments.
This analytical insight highlights the importance of integrating
predictive elements into assignment strategies to enhance the
overall efficiency of CS utilization.

Figure 5 compares user satisfaction probabilities using the
four methods derived from BipartiteSAGE scores. Among
these methods, CSLP exhibits the highest and most consis-
tent satisfaction rates, followed by genetics, which exhibits
moderately high satisfaction. These results can be attributed
to the BipartiteSAGE-based preferred station assignments in
CSLP and Genetic methods, ensuring a better alignment with
user preferences. In contrast, the Nearest and Random methods
show lower and more varied satisfaction levels. Mainly, the
Nearest method exhibits significant variability in satisfaction,
indicating a potential misalignment with user preferences.

V. CONCLUSION

This paper introduces a cutting-edge CS recommendation
framework based on GNN to identify optimal CSs for EVs.
The proposed system offers finely tuned recommendations
highly aligned with individual user needs with an accuracy of
94%, capturing the complex relationships and dependencies
within user-station charging habits and strategically assigning
users using the CSLP algorithm by considering the predicted
availability of CSs and the real-time travel distances to these
stations. This solution ensures an efficient allocation of users
across available stations, substantially minimizing waiting
times and thereby improving user satisfaction and the system’s
overall efficiency. This two-stage framework underscores the

importance of advanced analytics in improving charging net-
work efficiency and promoting EV adoption. Future work will
refine these models to adapt to dynamic user behavior, station
conditions, and traffic. Prioritizing renewable energy-powered
CSs will help balance the electrical grid during off-peak hours.
This approach supports sustainable development and fosters
innovation in smart city initiatives.
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