
Utilizing Data-Driven Techniques to Improve
Predictive Modeling of Connected Electric Vehicle

Energy Consumption
Ahmed-Ramzi Houalef, Florian Delavernhe, Sidi-Mohammed Senouci, El-hassane Aglzim

Université de Bourgogne, DRIVE Lab, Nevers, France, email: {firstname.lastname}@u-bourgogne.fr

Abstract—Electric vehicles (EVs) have emerged as a promising
solution for environmental preservation. However, a major hurdle
remains: range anxiety caused by limited driving range and
inaccurate energy consumption estimates. This is because energy
use in EVs varies significantly based on environmental factors
(like temperature) and driving conditions (like traffic congestion).
To address this challenge, this paper leverages the recent trend of
connected electric vehicles (CEVs). These vehicles are equipped
with sensors and onboard computers that gather real-time data
on various aspects that affect energy consumption. The paper
then introduces a Tri-component data-driven machine-learning
model that utilizes this data from connected EVs. The model
focuses on optimizing route planning for energy efficiency by
predicting energy consumption along different road segments.
It considers various external factors like temperature, traffic
congestion, and road incline to predict three key elements:
velocity (how fast the vehicle will go), traction power (energy
needed to move the vehicle), and auxiliary power (energy used
by features like A/C and onboard computer). Tested in real-
world scenarios, the model demonstrates a significant reduction
in energy consumption estimation errors, with a remarkable
2.38% error rate for battery state-of-charge (SoC) and 0.52 kWh
for energy consumption.

Index Terms—electric vehicles, route planning, energy effi-
ciency, machine learning, energy consumption.

I. INTRODUCTION

The rise of electric vehicles (EVs) is a boon for the envi-
ronment, but range anxiety – the fear of running out of charge
– remains a major hurdle. Consumers worry about travel dis-
tance, especially under varying conditions. This apprehension
significantly impacts EV adoption. To address range anxi-
ety, various strategies are employed. These include increas-
ing battery capacity, improving energy management systems,
expanding charging infrastructure, and optimizing charging
times [1]. However, another powerful tool exists: smart route
planning [2] specifically designed for EVs. Traditional route
planning focuses on distance or time, but it doesn’t guarantee
energy efficiency for EVs. Factors like speed, acceleration,
road incline, and regenerative braking all play a role. This is
where energy-efficient route planning comes in, considering
energy consumption for each road segment and using that data
for route optimization. Existing models for energy-efficient
route planning fall into three categories based on their energy
calculation methods: physics-based (using scientific princi-
ples), statistics-based (finding relationships in historical data),
or AI-based (learning complex relationships from data), each
with varying levels of variable aggregation. High aggregation

uses averages over long periods, while low aggregation uses
frequent individual data points for more precise predictions.
Physics-based and statistics-based often lack the adaptability
needed for real-world scenarios. Here’s where CEVs come
in. Connected EVs are equipped with a wealth of sensors
and onboard computers that gather real-time data on driving
conditions, energy usage, and environmental factors. This data
stream is a goldmine for AI-based route planning models.
Unlike traditional models, data-driven machine learning, can
analyze vast amounts of historical energy consumption data
collected from connected EVs. This allows them to identify
complex relationships between factors like traffic, weather, and
driving behavior, empowering them to adapt predictions to
ever-changing real-world conditions. By leveraging the power
of data and connectivity, connected EVs can integrate seam-
lessly with AI-based route planning models. This combination
offers a powerful solution to address range anxiety. It allows
for highly precise energy consumption estimates, leading to
more efficient routes and ultimately, a more practical and
appealing choice for consumers. This paper introduces a data-
driven machine learning framework for optimizing EV energy
consumption and enabling energy-efficient route planning. The
framework leverages three key components:

• Long-Term Velocity Model: This model predicts the
expected speed for each road segment, considering factors
like traffic patterns and road grade.

• Hybrid Traction Power Model: Utilizing the predicted
velocity, this model estimates the energy required to
propel the vehicle along each segment, by combining
physics-based model with an Artificial Neural Network
(ANN).

• Auxiliary Power Model: This model accounts for energy
consumption by auxiliary systems like air conditioning
and heating, based on factors like ambient temperature
and user preferences.

By combining these predictions, the framework generates an
estimate of the vehicle’s energy consumption for different
routes. This allows drivers and route planning systems to
identify the most energy-efficient paths, ultimately maximizing
driving range and minimizing environmental impact. The
rest of the paper is organized as follows. Related work is
detailed in Section II, the adopted modeling approach is
detailed in Section III. The three proposed models, namely



Traction Power, Auxiliary Power, and Velocity are discussed in
Sections III.C, III.D, and III.E, respectively. The experimental
validation results are summarized in Section IV. Conclusions
are in Section V.

II. RELATED WORK

Driven by concerns over “range anxiety”, EV adoption
necessitates sophisticated route planning (itinerary planning)
to maximize operational range. Route planning can be catego-
rized into problems focusing on different objectives: minimiz-
ing travel time, energy consumption, distance, or a combina-
tion of these. In this work, we prioritize energy optimization,
aiming to identify the route that minimizes energy expenditure
for the journey. Energy-based route planning systems rely
on a three-step process to achieve this goal. A Geographic
Information System (GIS) gathers detailed geographical data
on road segments. An energy model uses this data to estimate
energy consumption for each segment, considering various
factors and assigning weights accordingly. A shortest path
algorithm then utilizes these weights to determine the route
with the lowest overall energy consumption. Energy-based
route planning systems can be categorized according to the
aggregation level and calculation method of their energy
model, in one hand High Aggregation Models rely on sim-
plified assumptions and average values to estimate energy
consumption, in the other hand Low Aggregation Models
incorporate more granular data and realistic values to achieve
higher accuracy. Calculation methods can be categorized into
three main types: physics-based models, statistical data-driven
models, and machine learning-based data-driven models. In
[3], the authors employed a physics-based model to estimate
battery SoC, incorporating a statistical model to account for
traffic conditions. However, auxiliary power was not taken
into consideration, which may lead to less accurate results.
in [4] a physics-based energy model has been used with the
assumption of constant auxiliary power, this assumption does
not reflect real-life scenarios. As for velocity, they used a linear
regression model. In [5], the authors proposed a data-driven
approach based on historical data clustering. However, due to
the absence of real energy data, they relied on a physics-based
model for data generation. Additionally, for estimating aux-
iliary power, they utilized a temperature-dependent function
sourced from a Nissan Leaf, this approach poses deployment
challenges due to its data-intensive nature. In [6] the authors
proposed a physics-based model for energy while using the
maximum allowable road segment velocity (speed limit) as a
reference and topography data was obtained from the “USGS
Earth”. Using the speed limit as a reference for energy
calculation fails to capture real-life scenarios, as it overlooks
driver behavior’s impact on acceleration and deceleration. The
authors in [7] proposed Eco-Routing, Eco-Driving, and Energy
Consumption Prediction with physics-based model for energy
and ANN for optimal speed recommendation. [8] developed
a real-time range estimation based on calculating the energy-
optimal route, considering traffic influences. In [9], the authors
proposed a strategy to optimize EV route planning considering

traffic impedance information. In [10] the authors proposed a
Q-learning approach with a physics-based energy model, this
approach has some limitations when it comes to the data size.
while the previously mentioned work tackled route planning
directly, others have tackled the energy and speed modeling
separately. The authors of [11] tackled energy estimation using
Floating Car Data and statistical methods. In [12] the authors
explored different machine learning (ML) techniques to esti-
mate energy consumption and identify the key factors influ-
encing it. [13] has independently tackled the speed prediction
problem. Current state-of-the-art strategies for electric vehicles
often rely on simplified models, particularly physics-based
ones. These models may not account for all environmental
variables and often use highly aggregated data, leading to re-
duced accuracy. Additionally, some complex models can pose
deployment challenges due to their computational demands.
This manuscript proposes a data-driven, tri-component hybrid
approach for accurate electric vehicle energy estimation. By
leveraging realistic data and incorporating environmental vari-
ables, this approach offers improved prediction capabilities.
Furthermore, it can be applied to various driver profiles and
car models, requiring only new data for integration.

III. PROPOSED APPROACH FOR ENERGY CONSUMPTION
ESTIMATION

In this section, we will discuss the global system architec-
ture, different key components and the used data for energy
consumption estimation.

Fig. 1. Overview of the system architecture

A. System Architecture

As illustrated in Figure 1, an energy consumption esti-
mation system leverages three key components. The first,
velocity prediction, utilizes historical data on average segment
speed, maximum allowable speed, traffic congestion levels
and driver’s to estimate the expected velocity for each road
segment. This predicted velocity then serves as input for the
traction power demand model, which calculates the energy re-
quired to propel the vehicle along the segment based on factors
like vehicle weight and road topography. Finally, the auxiliary
power model estimates the energy consumption of auxiliary
systems like heating, ventilation, air conditioning (HVAC), and
lighting, considering factors like ambient temperature and user



preferences. The outputs from both the traction power demand
model and the auxiliary power model are then combined to
provide a comprehensive estimate of the vehicle’s total energy
consumption.

B. Data Processing

For our experiments, we used a Nissan Leaf dataset [14]
that consists of 80 driving hours, with a frequency of 1 Hz,
collected in Riverside, California. This rich dataset includes
features like GPS points, speed, traction and auxiliary power
consumption, altitude, ambient temperature, date, and time.
Unfortunately, our approach necessitates additional data for
implementation, notably the road slope (Grade). Due to the
inadequacy of the available road slope data in the dataset, we
decided to calculate it at each time step using. This involved
utilizing data from the altitude sensor, time, and velocity, as
outlined by Equation 1.

θ = arctan

(
Altitudediff

v · t

)
(1)

Where Altitudediff denotes the difference between two con-
secutive altitudes. Other crucial information, such as average
and max allowable speed, require matching each GPS point to
a given road segment. Hence, we implemented an incremental
matching algorithm with back-track using Open Street Map
(OSM). By doing so, we can assign each collected data point
to a road segment. The max allowable speed has been fetched
from OSM directly while the global average speed for each
road segment has been calculated using Equation 2. The details
of the matching algorithm are not detailed in the present paper,
as it is beyond the scope of this research paper.

vl =
1

i · j

i∑
n=0

j∑
t=0

vn(t) (2)

Where vl is the average speed of the entire segment, vn
is the instantaneous speed at a given moment, i represents
the number of times the segment is traversed across various
driving cycles, and j denotes the duration of each passage
through the segment. To determine whether the vehicle was
operated during the night or day, thereby indicating the usage
of car lighting, we conducted an analysis that integrated
time and date information with sunset and sunrise data. This
analytical process yielded a binary representation serving as
an indicator of lighting usage. To measure the congestion level
of each segment, we used the speed performance index (SPI)
[15] as shown in Equation. 3. Congestion quantification levels
are shown in Table. I

TABLE I
CONGESTION QUANTIFICATION LEVELS

Speed Performance Index Traffic State Level
(0,25) Heavy congestion

(25,50) Mild congestion
(50,75) Smooth
(75,100) Very smooth

SPI = (vavg/vmax) · 100. (3)

Where vavg is the segment’s average velocity in the cor-
responding passage, and vmax is the maximum allowable
velocity in that segment. The acceleration can be directly
derived from the speed.

C. Traction Power Consumption Forecasting

This subsection discusses the modeling approaches of the
traction power model and compare the results of different
approaches.

1) Modeling: To achieve a highly accurate power con-
sumption model, we employed a multi-faceted approach that
leverages physics-based, AI-based, and hybrid modeling tech-
niques. The physics-based model, detailed in equations (4) to
(9), calculates the power requirement based on fundamental
physical principles by calculating different forces (Rolling,
Climbing, Acceleration, and Aerodynamic).

Froll = crr ·m · g (4)
Fclimb = m · g · sin(θ) (5)

Faero = 0.5 · cd ·A · ρ · v2 (6)
Facc = m · a (7)

FTraction = Faero + Facc + Fgrad + Froll (8)

PNet =

{
FTraction · v · β if FTraction < 0

FTraction · v/α if FTraction ≥ 0
(9)

PTotal = PAux + PNet (10)

ETotal =
δt

3600

∫ b

a

PTotal(t) dt (11)

For the AI-based model, we adopted a simple four-layer Arti-

TABLE II
VARIABLE DESCRIPTIONS

Variable Description
m Mass
g Gravity
crr Friction Coefficient
v Velocity
cd Drag Coefficient
A Frontal Area
ρ Air Density
a Acceleration
α Transmission Efficiency
β Regeneration Efficiency
δt Sampling Time

ficial Neural Network (ANN) architecture. While the specific
choice was informed by experimentation, the overall approach
has strong potential for further refinement. The model takes
three inputs – slope, velocity, and acceleration – to predict
the net power (PNet). We selected these inputs based on the
Pearson Correlation Coefficient (PCC) analysis, as illustrated
in Table III.

Building upon the physics-based model, the hybrid model
leverages the same four-layer ANN architecture. However,
instead of raw data, it utilizes the calculated forces (rolling



(a) Physics-based (b) ANN (c) Hybrid
Fig. 2. Hexagonal binned plots of Power Forecasting Comparison

TABLE III
PCC OF ANN MODEL FEATURES

Velocity Slope Acceleration
Net Power 0.28 0.19 0.62

resistance, grade, aerodynamic, and acceleration) from equa-
tions (4) to (7) multiplied by the velocity as inputs. This
refined input selection empowers the model to capture the
relationships between these variables more effectively, leading
to faster convergence. This is likely reflected in the improved
PCC values observed in Table IV.

TABLE IV
PCC OF HYBRID MODEL FEATURES

Roll Aero Climb Acc
Net Power 0.28 0.26 0.35 0.74

2) Evaluation: To ensure a fair comparison between the
models, we employed a stratified split on our data-set, dividing
it into three partitions: training (60.3%), validation (29.7%),
and test (10.0%). While the training and validation sets were
primarily used to train and tune the AI-based and hybrid
models, the test set was used for a global comparison of
all three approaches (physics-based, AI-based, and hybrid).
The effectiveness of the physics-based model can be signif-
icantly impacted by the chosen values for transmission and
regeneration efficiency. To ensure a more realistic evaluation,
we employed an exhaustive search to identify the optimal
efficiency values. Since our primary focus is the comparison
of power models, we leveraged the ground truth velocity data
(actual measured velocity) for this evaluation. As shown in
Fig. 2, the physics-based model exhibits a higher degree of
variance in its predictions compared to the ANN and hybrid
models. This is reflected in a wider distribution of results
around the optimal solution, suggesting a greater presence of
outliers. Conversely, the ANN and hybrid models demonstrate
a higher concentration of predictions near the optimal solution,
indicating a lower incidence of outliers.

The results presented in Table V reveal statistically sig-
nificant improvements in power prediction achieved by both
the ANN and hybrid models compared to the physics-based
model, as evidenced by superior R-squared (R²) and a lower
Mean Squared Error (MSE) values. While the incremental

TABLE V
TRACTION POWER MODELS EVALUATION

Physics-based ANN Hybrid
MSE 61.035 30.88 29.63

R-squared 0.679 0.779 0.781

improvement offered by the hybrid model relative to the
ANN model might appear limited, it’s pertinent to consider
the cumulative effect of errors in energy estimation. Given
that energy is obtained by integrating power over time, even
a minor discrepancy in power prediction can significantly
amplify the error in the final energy estimates. We conclude
that the hybrid model has better performance. Therefore, it
will be used for the remainder of this work.

D. Auxiliary Power Demand

We now evaluate the effectiveness of various modeling ap-
proaches for the auxiliary power model through a comparative
analysis of their results.

1) Modeling: To develop a robust model for forecast-
ing auxiliary power consumption, we embraced a holistic
methodology. We combined the power demand from various
sources, including air conditioners and other equipment, to
obtain a comprehensive data-set of continuous auxiliary power
consumption levels. Through this process, we unveiled 45
distinct values, encapsulating the spectrum of observed auxil-
iary power consumption. Our model utilizes a Random Forest
Regressor. This choice is particularly suitable because it can
effectively handle both continuous and categorical features.
Our data includes several categorical features, such as month
and binary indicators for air conditioner and light usage. The
Random Forest Regressor will handle these features internally
during the model building process. The model leverages five
key inputs—ambient temperature (continuous), time of day
(continuous), month (categorical), and binary indicators for
air conditioner and light usage (categorical)—to predict the
specific auxiliary power consumption value based on these
influencing factors.

2) Evaluation: The model’s performance is summarized
in Table VI. It achieves a low Mean Absolute Percentage
Error (MAPE), indicating high accuracy in predicting auxiliary
power consumption values. Quantitatively, a lower MAPE
signifies a smaller average difference between predicted and



actual consumption, expressed as a percentage of the actual
values. Additionally, the model obtained a good R-squared
(R²) score, suggesting a strong positive linear relationship
between the predicted and actual values. This observation
suggests that the model’s predictions closely align with actual
consumption patterns, surpassing a baseline approach that
relies solely on the constant average auxiliary consumption.

TABLE VI
AUXILIARY POWER MODEL EVALUATION

MSE MAPE R-squared
Random Forest Regressor 0.049 15.2% 0.808

Constant average Aux consumption 0.270 135.17% -0.040

E. Long-Term Velocity Forecasting

This subsection investigates the efficacy of various modeling
approaches for the velocity model by comparing their results.

1) Modeling: Velocity and acceleration are important vari-
ables for the determination of power consumption. To model
the velocity we implemented three models and compared
their performance. Our first approach leverages a multivariate
time series model. This acknowledges that the velocity of a
segment depends on the previous segment’s velocity, along
with congestion level and the global average velocity specific
to that segment. We opted for a Long Short-Term Memory
(LSTM) network with three LSTM cells followed by dense
layers. The model is trained to predict the velocity for each
segment sequentially, using the actual historical velocity of
the previous segment, the average segment velocity and traffic
level as inputs. The specific model architecture and hyper-
parameters were chosen through experimentation. The second
approach builds upon the first by employing a recursive
strategy. We maintain the same LSTM network architecture.
However, during training, instead of using the actual previous
velocity of the segment as a training input for predicting the
next one, we use the predicted velocity from the previous
prediction. This approach aims to help the model learn the
inherent error rate associated with its predictions and mitigate
its influence on subsequent predictions. The third approach
utilizes a seven-layer ANN to directly predict future velocity,
bypassing the need for previous velocity data. This approach
offers advantages in simplicity and computational efficiency.

In all three approaches, a safety check is applied using the
maximum allowable velocity of each segment. This ensures
that even if the predicted speed exceeds the limit, the final
output is adjusted to stay within the safe range.

2) Evaluation: We evaluated the models on the same test
set described earlier. As shown in Fig. 3, the ANN model
achieves superior performance compared to both the other
approaches and the baseline references. Notably, the ANN
boasts significantly faster inference times compared to LSTM.
This is because, in our case, LSTM requires each inference
to consider the previous one, introducing a sequential de-
pendency. While the results were promising, the forecasting

method does not account for the sequential nature of the
segments. Consequently, we observed abrupt changes in speed
between segments. This can lead to significant acceleration
and deceleration events, which translates to power spikes that
negatively impact the overall power estimation accuracy. This
phenomenon is clearly visible in Fig. 4 as we can see that the
spectral components magnitude of the predicted acceleration
is higher than the actual. To enhance the realism of the fore-
casted velocity, we employed the Exponential Moving Average
(EMA) technique on both of the velocity and acceleration.
This approach functions as a low-pass filter, attenuating the
magnitude of high-frequency components in the data, leading
to a smoother speed transition between road segments.

Fig. 3. Box plot of different velocity forecasting methods

Fig. 4. Acceleration spectrum

IV. EVALUATION OF THE INTEGRATED MODEL

We conducted a comprehensive evaluation of the integrated
model on the same test set described earlier. This test set
comprised eight driving cycles, each lasting one hour. The
evaluation assessed the performance of the integrated model,
which incorporated an ANN velocity forecasting module
alongside the hybrid traction power and Auxiliary power
demand models. Energy consumption was calculated using
Equations 11 and 10. By subtracting this estimated energy
consumption from the initial battery capacity, we can obtain
an approximate value for the remaining charge. Figure 5
depicts the results for a single driving cycle. As observed, the
calculated SoC falls below the actual value. This discrepancy
can be attributed to the inherent error rate of the power model.



Additionally, it is noteworthy that the Estimated Time of
Arrival (ETA) is two minutes less than the Actual Time of
Arrival (ATA) due to the model’s velocity predictions. This
difference in arrival times led to higher power consumption.
Table VII details the performance of the integrated model
across various driving cycles. Notably, all cycles share an ATA
of 60 minutes and an average driven distance of 50 kilometers.

TABLE VII
PERFORMANCE ON DIFFERENT DRIVING CYCLES

Driving Cycle Energy MAE SoC MAE ETA (Minutes)
1 0.579 2.734 58.07
2 1.026 4.490 62.22
3 0.628 2.702 76.02
4 0.555 2.834 59.76
5 0.601 2.568 61.28
6 0.204 0.970 63.63
7 0.307 1.558 72.24
8 0.311 1.253 67.79

Fig. 5. Global evaluation on driving cycle 1

V. CONCLUSION

In conclusion, this study emphasizes the potential of a
Data-Driven integrated model for both SoC estimation and
energy consumption prediction in connected EVs. The model
incorporates both velocity forecasting and power demand
estimation. Furthermore, this model can be seamlessly inte-
grated with route planning tools leveraging road data from
various APIs. Its adaptability to different vehicles and drivers
based on data availability enhances its versatility. Notably,
this approach excels in in-vehicle navigation systems, as the
onboard computer has continuous access to all necessary
data. This data can be used to continuously train the model,

ensuring it remains updated and captures changes in driving
and consumption patterns. Overall, connected EVs, with their
data-driven approach, represent a leap forward in sustainable
transportation.
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