
A Key to Embedded System Security: Locking and Unlocking Secrets with a
Trusted Platform Module

Teri Lenard, Anastasija Collen and Niels A. Nijdam
Centre Universitaire d’Informatique,

Geneva School of Economics and Management,
University of Geneva, Switzerland

teri.lenard@unige.ch, anastasija.collen@unige.ch,
niels.nijdam@unige.ch

Bela Genge
Department of Electrical Engineering

and Information Technology, George Emil Palade
University of Medicine, Pharmacy, Science,
and Technology of Targu Mures, Romania

bela.genge@umfst.ro

Abstract—Security hardware modules were designed to pro-
vide a viable solution that can empower Embedded Systems
(ES) with state-of-the-art cryptographic and security capa-
bilities. They can execute cryptographic operations, securely
store sensitive information, or provide measurements for
attestation. A key element in designing and implementing
security solutions on top of a security hardware, such as the
Trusted Platform Module (TPM), is secure secret storage.
The work at hand addresses the problem of secret protection
by showcasing how the TPM standard can serve as a vault in
protecting sensitive information in ES. This is accomplished
as follows. Secrets are locked in the TPM according to
Platform Configuration Register (PCR) policies created on
top of the system state and sealing. In contrast, unlocking is
achieved through TPM unsealing. In both cases, secure and
authenticated sessions are enforced while communicating
with the TPM. Furthermore, our work goes a step further
and presents a simple TPM attestation protocol, destined to
verify the system state and TPM application. Lastly, a series
of experiments were conducted on a reference hardware,
with two different TPM configurations, to measure execution
times of TPM operations.

Index Terms—trusted platform module, secure storage, em-
bedded systems

1. Introduction

Embedded Systems (ES) have built in the past decades
the necessary foundation for designing and constructing
robust and reliable systems that require a high level of
automation, data processing, monitoring and control, and
tolerance to faults and errors. Such systems range from
Industrial Control Systems (ICS), Industrial Internet of
Things (IIoT) to Automotive Systems (AS), to mention
a few. A common characteristic across these systems, is
that they were not built with security in mind [1]. This
aspect was initially neglected since these systems were
self-contained, isolated and disconnected from the outside
world, having a narrower scope in terms of functionalities.
This factor gave a certain level of security or assurance
that the system is safe. However, once they became inter-
connected with the outside world (e.g., Internet) secu-
rity became a significant issue. Consequently, this inter-
connectivity revealed a grim picture that was right away
seen by malevolent parties.

As a counter measure, specially tailored security so-
lutions and protocols were developed by the scientific
community in tandem with the industry. This had as
an outcome a plethora of anomaly and outlier detection
techniques [2], data authentication [3] and key distribution
protocols [4, 5], and intrusion detection and firewall sys-
tems [6]. Along this, secure hardware technologies such as
Physical Unclonable Functions (PUFs) [7], Hardware Se-
curity Modules (HSMs) [8] and Trusted Platform Modules
(TPMs) [9] became an attractive solution to strengthen the
existing system security level of ES. Therefore, protecting
and shielding application secrets, cryptographic keys, or
certificate became a core building block in designing and
implementing security protocols and applications.

The benefit brought up by a security enclave and
cryptographic co-processor such as the TPM is significant.
The TPM is a standard designed to enable a system with
a powerful tool that can generate and store cryptographic
keys, executes cryptographic operations isolated from the
main processing unit, and enable equipment identifica-
tion or attestation. While the TPM offers concrete guide-
lines on how Original Equipment Manufacturers (OEMs)
should design the chip, in the hands of a user (e.g.,
security engineer, developer) it represents a tool that can
be used to correctly secure a given system.

The work at hand demonstrates how an ES (e.g.,
automotive vehicle control unit or Internet of Things (IoT)
sensor) that posses the capabilities of a TPM, can se-
curely lock and unlock sensitive information stored in the
TPM. Additionally, the proposed work goes a step further
and exemplifies how the software managing the access
control to this information can be remotely attested by a
trusted authority with the TPM built-in features. Our work
follows best practices in terms of TPM usage extracted
from the standard [9], to enforce a policy-based access
control to sensitive information, with properly encrypted
and authenticated communication between the embedded
device software and the TPM.

The remainder of the paper is structured as follows.
In Section 2 we offer a set of background definitions
and concepts on the TPM. Afterwards, Section 3 outlines
the assumptions considered in our work. Following this,
in Section 4 outlines the design of our solution. Subse-
quently, a set of performance measurements are given in
Section 5, with the related work in Section 6. Lastly, our
paper concludes Section 7.



2. Trusted Platform Module

The TPM [9] is a standard developed by Trusted
Computing Group (TCG) [10], that encapsulates a tamper-
proof environment dedicated to execute cryptographic op-
erations in isolation from the main processing unit. TPMs
serve as a trust anchor rooted in hardware, on top of
which trusted security services can be built. TPMs allow
secure key generation (e.g., via key hierarchies [11]) and
storage (e.g., via non-volatile memory and sealing [12]),
basic cryptographic operations (e.g., encryption, hashing,
digital signature), trusted and measured boot [13], and
remote attestation by leveraging its Platform Configuration
Registers (PCRs) [14]. The presence of TPMs in the ES
was deeply researched in the past decade. For instance, in
automotive systems, OEMs such as Infineon is producing
now TPMs dedicated to AS and IIoT. Additionally, TPM
use-cases are offered not only by TCG [15], but by OEMs
themselves [16, 17].

TPMs store and have the ability to generate several
types of special cryptographic keys. The Storage Root Key
(SRK) is one such special key. Rooted in the TPM hard-
ware, the SRK is only available inside the TPM and it can
never leave the TPM environment. The SRK is generated
from a random seed, when a TPM user (e.g., OEM) takes
ownership over the TPM. SRK has the purpose to protect
system’s application secrets.

Another key shielded by the TPM is the Endorsement
Key (EK), which functions as a unique identity for the
TPM, exposing the public part to the user through the
TPM, while keeping the private part protected. The EK
is generated by the OEM that produces the TPM (e.g.,
Infineon) using a secret seed within the TPM. With the
endorsement hierarchy, TPMs allow the generation of
persistent or ephemeral Attestation Identity Key (AIK),
leveraged to sign and attest platform depended measure-
ments.

Key hierarchies represent one method through which
TPMs can generate and store cryptographic keys. Since
TPMs have a limited amount of Non-volatile Memory
(NVRAM), key hierarchies allow deterministic key gen-
eration starting from a master secret. The TPM has three
persistent hierarchies. First, there is the platform hierarchy
which is controlled by the platform manufacturer. Sec-
ond, the storage hierarchy is managed by the platform
owner. And thirdly, the endorsement hierarchy, which is
a privacy sensitive tree intended for TPM attestation and
identification. Additionally, TPMs have a more generic
hierarchy, named the NULL hierarchy, which is dedicated
to ephemeral keys and operations. In terms of data pro-
tection, TPMs have a mechanism called sealing. With
sealing, the TPM can encrypt the private part of a key
generated from a hierarchy and store it on the disk, while
the public part remains available. This further links the
private part of the key to the TPM, making it usable only
with the TPM that sealed the key.

PCRs are a TPM-specific feature that provide
hash-based measurements for remote attestation and
trusted/measured boot. In a TPM, PCRs are grouped in
different PCR banks according to their hash function (e.g.,
SHA-1, SHA-256) [14]. A PCR has a write-only state
that stores a hash digest. PCRs support a single operation
called extend. On system boot, the state of a PCR is

set to a default value (e.g., a sequence of 0 or 1 bytes
equal to the hash digest length). If an extend operation
is performed on a PCR, the current state is concatenated
with a new digest, and the new digest output is stored
in the PCR state. By leveraging a bank of PCRs and a
sequence of extend operations, hash-based measurements
can provide a system state useful to determine if the
system executes trusted code. Additionally, this system
state can be leveraged to attest the system, with a quote
operation. Quoting the PCR state implies reading a set
of PCR values from the bank, and signing them with the
AIK. The AIK is an anonymous key derived from the
endorsement hierarchy to be used for privacy sensitive
tasks, such as quoting PCRs, signing or certifying.

3. Assumptions

Protecting sensitive information with a TPM implies
the presence of a TPM-based measured boot [18]. The
measured boot process aims to verify the integrity of the
system firmware, boot loader, kernel, and drivers, before
each component is loaded in the memory. This verification
ensures that only trusted code is executed on system
start-up and was not modified by a malicious attack [19]
(e.g., rootkit, bootkit). Measured boot is achieved using
TPM PCR banks. A set of PCRs are extended before
boot with the hash values of each system component
that requires integrity checks (e.g., kernel). This PCR
system state can confirm if the booted system is in an
expected state (i.e., runs trusted code), and, depending on
it, PCR access policies can be constructed. Additionally,
PCR-based measured boot enables a trusted authority to
remotely attest at run-time the system state.

Measured boot differs from other booting options such
as secure or trusted boot. While trusted boot achieves
similar properties with measured boot, without requiring
the presence of a TPM, secure boot verifies the running
code with digital signatures, and certificates emitted by a
trusted authority. In the current work, measured boot is an
essential feature, since the access control policy employed
to protect sensitive information leverage the trusted system
state. This approach assumes that the system itself must
decide when it is in an expected secure state that allows
secure access to the sensitive information stored in the
TPM.

A limitation here is the fact that TPM measured boot
assures system integrity at boot. During run-time, if an
attacker is able to inject or remote execute code, this
defence mechanism is not enough. This is also known
for TPM remote attestation, where the PCR system state
needs to attest the integrity of the running code.

Lastly, since ES encompass a wide range of devices,
it is to mention that our work targets ESs operated by a
microkernel or monolithic kernel based operating system,
on top of which an application (i.e., user mode) exists.

4. Proposed work

The symbols and notations from Table 1 are used to
describe the proposed work.

For setup, the TPM was bootstrapped with the nec-
essary keys and certificate. Figure 1 outlines these steps.



TABLE 1: Table of symbols.

A Attestor

V Verifier

C Certificate authority

pk Public key

sk Private key

ek Endorsement key

ak Attestation key

srk Storage root key

Crt Certificate

{} Encryption or sealing

h TPM persistent handle

c TPM context

P TPM set of PCRs values

Here, and in the rest of the paper, TPM command notation
[20] is used to outline TPM operations. The set() operation
denotes an initialisation procedure that sets a constant
value to a TPM handle. In the TPM world, a handle points
to an existing memory space in the TPM’s NVRAM that
can store a persistent object. Accordingly, three persistent
TPM handles were defined: (1) hek corresponding to EK,
(2) hsrk for SRK and (3) ha corresponding to the AIK.

The EK and AIK were created under the endorsement
hierarchy, and the SRK on the owner hierarchy. Since
the EK and SRK are persistent keys generated from a
secret seed inserted in the TPM by the TPM’s OEM,
the tpm2 createprimary(h) call was used for both cases.
Here, h denotes a handle associated with a TPM hierarchy.
In other words, this call signifies the creation of a TPM
primary persistent key from a primary seed, on a specific
hierarchy. The (4) tpm2 createprimary(hek) generates the
EK on hek and returns its public key pkek. Likewise, (5)
tpm2 createprimary(hsrk) call creates the SRK and re-
turns the corresponding public key pksrk. Afterwards, (6)
tpm2 create(ha) generates the AIK and returns the public
part pka, the sealed private part {ska} with the associated
TPM context ca. Compared to persistent handles, transient
objects are only temporary loaded in the TPM, can be
swapped in or out, and are identified by a context object.
Lastly, (7) tpm2 getekcertificate() is called to retrieve
from a trusted server the EK certificate. It is important
to note that the key creation process might be done in
parallel with the measured boot setup as part of system
setup. Additionally, we showcase the TPM key creation
process since not all TPM manufacturers ship their TPM
with a generated EK, SRK or platform certificate.

Once the TPM is bootstrapped with the necessary
keys, the access control policy can be set. Following the
steps outlined in Figure 2, first, the set of PCR indexes
associated with the measured boot were identified. Ac-
cordingly, let P denote the set of PCR indexes corre-
sponding to this process. With (1) tpm2 pcrread(P ) the
state of the PCRs is read for policy creation. Using the
TPM call (2) tpm2 policypcr(P ), a TPM policy is created
according to P . As this call will load a policy object into
the TPM, as with other calls, a context cP is returned.
Afterwards, policy P can be linked with a newly created

TPM key creation.
1 : hek ←$ set()
2 : hsrk ←$ set()
3 : ha ←$ set()
4 : pkek ←$ tpm2 createprimary(hek)
5 : pksrk ←$ tpm2 createprimary(hsrk)
6 : ca, pka, {ska} ←$ tpm2 create(ha)
7 : Crt←$ tpm2 getekcertificate()

Figure 1: Required cryptographic key creation procedure
to setup the TPM.

TPM object through cP . Before creating the sealed object,
an authenticated and encrypted session is established with
the SRK by calling (3) tpm2 startauthsession(). Following
this, with (4) tpm2 create(), the policy context cP , the
SRK handle hsrk, and a secret s, s can be sealed with
the TPM and only retrieved (e.g., unsealed) if policy P
is met. This operation returns a pair of asymmetric keys
pks and {sks} derived from SRK, with sks sealed by
SRK. Lastly, the transient policy object cP is flushed from
TPM’s memory with the call (5) tpm2 flushcontext().

It can be observed that tpm2 create() was considered
so far twice, once for AIK creation, and once to create
a sealed object. According to [20], this specific call is
meant to create a TPM object that can be loaded in the
TPM (e.g., a pair of keys). Additionally, it can receive
as parameter a sensitive information that can be sealed as
well.

TPM sealing.
1 : P ←$ tpm2 pcrread()
2 : cP ←$ tpm2 policypcr(P )
3 : tpm2 startauthsession(cP , hsrk)
4 : pks, {sks, s} ←$ tpm2 create(s, cP , hsrk)
5 : tpm2 flushcontext(cP )

Figure 2: Sealing a secret with the TPM and a PCR-based
policy.

At run-time, when an application needs to retrieve
and use the sealed secret, the procedure in Figure 3 is
followed. Similar as in the sealing process, a policy object
is first created in (1) and (2). Subsequently, the authentica-
tion session is established in (3), and with (4) tpm2 load(),
pks, {sks, s} is loaded into the TPM to obtain cs. To un-
lock the sealed secret s, the (5) tpm2 unseal() call is used
in conjunction with hP . This call will succeed, only if pol-
icy P is met. Finally, in (6) and (7), tpm2 flushcontext()
is called twice to remove the transient object cs and cP .

Attesting the integrity of an application interacting
with a TPM represents the next step in the security
chain. This is achieved via remote attestation [21]. This
process implies three entities: an attestor A, a verifier V
and a certificate authority C. The protocol starts with V
sending a challenge n to A over a secure communication
channel. Here, n denotes a random nonce. Afterwards,
A proceeds to execute two TPM calls. The first one is a
tpm2 quote(), which reads a designated PCR bank P (i.e.,
associated with measured boot and the code executed by



TPM unsealing.
1 : P ←$ tpm2 pcrread()
2 : cP ←$ tpm2 policypcr(P )
3 : tpm2 startauthsession(hP , hsrk)
4 : cs ←$ tpm2 load(pks, {sks, s}, hsrk)
5 : s←$ tpm2 unseal(hP , cs)
6 : tpm2 flushcontext(cs)
7 : tpm2 flushcontext(cP )

Figure 3: Unsealing a secret with the TPM and a PCR-
based policy.

A V C

n

tpm2 quote()

q

tpm2 getekcertificate()

Crt
n+ 1, q, Crt

Crt

Verify(Crt)

Crtok
Crtok

tpm2 checkquote(q)

Quoteok

return

Figure 4: TPM-based attestation protocol.

A) and signs it with the AIK ak. Let this structure be
denoted by q. Along quote q, A reads the EK Crt using
tpm2 getekcertificate(). The EK certificate is unique to
the TPM and is provisioned by the TPM manufacturer
or OEM during system setup. A response back to V ’s
challenge with an incremented nonce n+ 1, quote q and
Crt. Upon receiving this response, V proceeds to verify
the authenticity of the certificate provided by asking C
if Crt is valid. If C successfully verifies Crt, V then
continues to verify q. To accomplish this, V is required to
store locally in its TPM a representation of the expected
PCR banks provided by A with q, and the public part
of A’s AIK. To complete the protocol, V executes a
tpm2 checkquote() operation over q with the public key
of A’s AIK. If the verification is successful, the protocol
finished as expected. All these steps can be visualised in
the state diagram from Figure 4.

The presented approach achieves the simple goal of
securely storing secrets, while guaranteeing additional
security properties in an embedded ecosystem. First, the
communication between the embedded application and the
TPM is encrypted (i.e., symmetric encryption with SRK)
and authenticated (i.e., via salted hashed message authen-
ticated codes) with authenticated sessions. Secondly, by
linking the sealed secret availability with a system state
PCR policy, it is guaranteed that the system runs trusted
code, and it is in an expected state when the secret is
retrieved. Thirdly, since the secret is sealed in the TPM,
reading the system image, does not leak any sensitive

Figure 5: Infineon OPTIGA SLB 9670 TPM 2.0 daugh-
terboard for Raspberry Pi.

information. Lastly, to enable remote trusted services to
attest the system state and the application accessing sen-
sitive secrets, a simple attestation protocol was presented.

5. Performance measurements

The current section offers a set of performance mea-
surements on TPM operations executed at run-time on the
ES. These TPM operations are unseal, used to retrieve a
TPM protected object, and quote, leveraged in attesting
the system state. We did not consider measuring other
TPM operation since this was already done in our lab in
a previous work on the same hardware [22].

Two development boards were considered in our mea-
surements, a Raspberry Pi (RPi) model 4 and a model
3B. Each RPi had attached an Infineon OPTIGA SLB
9670 TPM 2.0 daughterboard, as depicted in Figure 5.
In terms of implementation, we considered the python
module tpm2-pytss 1, which is a wrapper over the C tpm2-
tss 2 library. For convenience and rapid prototyping, the
high level Feature API (FAPI) was considered. FAPI offers
a high level Application Programming Interface (API),
abstracting low-level particularities through configuration
parameters.

FAPI uses cryptographic profiles to configure the TPM
with consistent usage of cryptographic algorithms, crypto-
graphic key properties and templates, hashing algorithms,
and PCR banks. By default, FAPI comes with two profiles,
for ECC and for the RSA cryptosystem. We measured
the execution times for the above mentioned TPM op-
erations (e.g., quote and unseal), on both RPi boards
with each profile. The intention here is to showcase on
different hardware, and with different configurations, how
the system behaves, outlining eventual delays introduced
by the underlying operating system (e.g., raspberrypi os)
on TPM function execution. For each experiment 100
measurements were recorded. Furthermore, in each case,

1. https://github.com/tpm2-software/tpm2-pytss
2. https://github.com/tpm2-software/tpm2-tss



TABLE 2: Minimum (Min.), maximum (Max.) and mean (Mean) execution times in seconds for quote and unseal TPM
operations.

RSA profile ECC profile

RPi4 RPi3 RPi4 RPi3

unseal quote unseal quote unseal quote unseal quote

Min.[s] 1.2018 0.5739 1.1983 0.5779 0.9629 0.3351 0.9650 0.3343
Max.[s] 1.2402 0.5912 1.2393 0.5926 1.0043 0.3466 1.0071 0.3462
Mean.[s] 1.2171 0.5847 1.2132 0.5861 0.9797 0.3391 0.9746 0.3390

0 20 40 60 80 100
Measurement number

0.950

1.000

1.050

1.100

1.150

1.200

1.250

E
xe

cu
tio

n 
tim

e 
[s

] RPi 3 RSA profile
RPi 3 ECC profile
RPi 4 RSA profile
RPi 4 ECC profile

0 20 40 60 80 100
Measurement number

0.300

0.350

0.400

0.450

0.500

0.550

0.600

E
xe

cu
tio

n 
tim

e 
[s

] RPi 3 RSA profile
RPi 3 ECC profile
RPi 4 RSA profile
RPi 4 ECC profile

Figure 6: Execution times in seconds for TPM unseal (left) and quote (right) operation on the considered setup.

the minimum, maximum and mean execution time was
computed.

As Figure 6 and Table 2 show, for both operations
the underlying delay that is introduced by the operating
system or the development board is not significant. For
example, a quote operation on RPi4 with a RSA profile
has a mean execution time of 0.5846s, while the same call
on a RPi3 has a mean execution time of 0.5861s. Similarly
can be stated for an unseal operation, that shows a mean
time of 1.2171s in the case of a RSA profile on RPi4,
and a mean time of 1.2132s in the case of RPi3. The
only significant difference in execution times concerns
the two FAPI profiles. On both RPi boards and TPM
operations, the ECC FAPI profile showed faster execution
times than the RSA one. For instance, on RPi4 the unseal
operation with the ECC profile is 0.2384s faster than the
RSA profile. Likewise, the statement holds for the mean
execution time of the quote operation, which is 0.2456s
faster on a ECC profile, than on a RSA one.

From these measurements it can be concluded that in
terms of implementation, the underlying embedded system
may influence to a certain degree, but not significantly, the
execution of TPM operations. Furthermore, the system
performance will be influenced in the end by the cryp-
tosystem considered in the implementation. Lastly, it is
to be mentioned that the measurements were conducted
on a single TPM chip connected to the RPi via SPI. This
may not be the case for real-world implementation, since
the connection to the TPM may be done with a different
communication channel.

6. Related studies

In the literature, TPMs were adopted as a solution
to solve various security challenges. Integrating the TPM
into an already existing system poses as consequence sev-
eral challenges, as pointed out by Hoeller and Toegl [23].
The authors intended to determine the implications of
integrating TPMs in cyber physical systems, and to point
out relevant impacts on system safety and availability.

A secure access and feature activation system designed
on top of TPMs for AS was proposed in [24]. The paper
leverages the TPM as a trust anchor to enable secure
authorisation policies. Prior work [22] likewise targets the
domain of AS, where the TPM was considered to build
security services (e.g., data authentication, key exchange)
on top of it. On similar hardware as our prior work,
Lu et al. [25] proposed an ES architecture composed of
several protocol (e.g., synchronisation or access control
protocols) designed on top of TPMs. In the same direction,
Groza et al. [26] designed CarINA, an identity-based
access control protocol that is built on top of TPM’s
features.

Other applications of TPMs can be found in the work
of Gilles et al. [27] where the TPM was considered a
proper solution to enable secure communication between
IIoT devices, playing the role in parallel as medium for
secure storage. Lu et al. [28] specifically targeted embed-
ded IoT heath-care devices. Here, the authors extended the
functionality of a TPM with a shadow TPM built in the
form of a kernel module. Based on this scheme, three
protocols were designed and implemented to preserve
application integrity and authenticity.

Along the above mentioned TPM applications, the



current work mainly fills the gap of locking and unlocking
secrets with the TPM. The TPM acts as a secure medium
through which ES can manage and restrict access to its
secrets. Secret locking is achieved through PCR-based
access policies derived from measure boot, and through
TPM sealing calls. On the other hand, secret unlocking is
done through unsealing. In both cases, authenticated com-
munication sessions were enforced while communicating
with the TPM.

7. Conclusion

Compared to the traditional information system that
adopt TPMs as a root-of-trust for building security solu-
tions, ES (e.g., AS, ICS, IIoT) raise different challenges
in terms of TPM usage. In the ES ecosystems, the device
itself is responsible to determine when the system is in a
trusted state, allowing secure retrieval of sensitive infor-
mation. Consequently, secure secret storage and policy-
based access control represent a mandatory requirement.
The work at hand addresses this aspect by showcasing how
TPMs can be used to solve this problem. TPM features,
such as sealing, policy PCRs and authenticated sessions,
were employed. Additionally, a simple remote attestation
protocol is presented to showcase how a remote trusted
service can verify the integrity of the system state and
application interacting with the TPM. Lastly, performance
measurements were conducted on the most significant
TPM operation (e.g., sealing, quote) executed at run-
time on the embedded device, with different TPM con-
figurations. The obtained results provide insights on the
execution times for two distinct TPM modes of operation,
namely with RSA and ECC cryptosystems.

Acknowledgements

This work is supported by the OPEVA project that
has received funding within the Key Digital Technologies
Joint Undertaking (KDT JU) from the European Union’s
Horizon Europe Programme under grant agreement No
101097267 and was co-funded by the Swiss State Sec-
retariat for Education, Research and Innovation (SERI)
and the Innosuisse – Swiss Innovation Agency. Views and
opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union
or KDT JU. Neither the European Union nor the granting
authority can be held responsible for them.

References

[1] M. R. Asghar, Q. Hu, and S. Zeadally, “Cybersecu-
rity in industrial control systems: Issues, technolo-
gies, and challenges,” Computer Networks, vol. 165,
p. 106946, 12 2019.

[2] D. Bhamare, M. Zolanvari, A. Erbad, R. Jain,
K. Khan, and N. Meskin, “Cybersecurity for in-
dustrial control systems: A survey,” Computers &
Security, vol. 89, p. 101677, 2 2020.

[3] M. Agrawal, J. Zhou, and D. Chang, “A Survey
on Lightweight Authenticated Encryption and Chal-
lenges for Securing Industrial IoT,” 2019, pp. 71–94.

[4] B. Genge, P. Haller, A.-V. Duka, and H. Sándor, “A
lightweight key generation scheme for end-to-end

data authentication in Industrial Control Systems,” at
- Automatisierungstechnik, vol. 67, no. 5, pp. 417–
428, 5 2019.

[5] Yee Wei Law, M. Palaniswami, G. Kounga, and
A. Lo, “WAKE: Key management scheme for wide-
area measurement systems in smart grid,” IEEE
Communications Magazine, vol. 51, no. 1, pp. 34–
41, 1 2013.

[6] C. Young, J. Zambreno, H. Olufowobi, and
G. Bloom, “Survey of Automotive Controller Area
Network Intrusion Detection Systems,” IEEE Design
& Test, vol. 36, no. 6, pp. 48–55, 12 2019.

[7] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas,
“Physical Unclonable Functions and Applications: A
Tutorial,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1126–1141, 8 2014.

[8] C. Labrado and H. Thapliyal, “Hardware Security
Primitives for Vehicles,” IEEE Consumer Electronics
Magazine, vol. 8, no. 6, pp. 99–103, 11 2019.

[9] Trusted Computing Group, “Trusted Platform Mod-
ule Library Specification, Family “2.0”, Level 00,
Revision 01.59,” 2019.

[10] ——, “TCG TPM 2.0 Automotive Thin Profile For
TPM Family 2.0; Level 0,” 2018. [Online]. Avail-
able: https://trustedcomputinggroup.org/resource/
tcg-tpm-2-0-library-profile-for-automotive-thin/

[11] Arthur Willand Challener and Davidand Goldman
Kenneth, “Hierarchies,” in A Practical Guide to
TPM 2.0: Using the New Trusted Platform Module
in the New Age of Security. Berkeley, CA:
Apress, 2015, pp. 105–118. [Online]. Available:
https://doi.org/10.1007/978-1-4302-6584-9 9

[12] ——, “NV Indexes,” in A Practical Guide to
TPM 2.0: Using the New Trusted Platform Module
in the New Age of Security. Berkeley, CA:
Apress, 2015, pp. 137–150. [Online]. Available:
https://doi.org/10.1007/978-1-4302-6584-9 11

[13] S. Sanwald, L. Kaneti, M. Stöttinger, and M. Böhner,
“Secure Boot Revisited: Challenges for Secure Im-
plementations in the Automotive Domain,” SAE In-
ternational Journal of Transportation Cybersecurity
and Privacy, vol. 2, no. 2, pp. 11–02, 8 2020.

[14] Arthur Willand Challener and Davidand Goldman
Kenneth, “Platform Configuration Registers,” in A
Practical Guide to TPM 2.0: Using the New
Trusted Platform Module in the New Age of
Security. Berkeley, CA: Apress, 2015, pp. 151–
161. [Online]. Available: https://doi.org/10.1007/
978-1-4302-6584-9 12

[15] T. C. Group, “TCG TPM 2.0 Au-
tomotive Thin Profile For TPM Fam-
ily 2.0; Level 0,” 2020. [Online]. Avail-
able: https://trustedcomputinggroup.org/resource/
tcg-tpm-2-0-library-profile-for-automotive-thin/

[16] Infineon Technologies AG, “Automotive
application guide,” 2019. [Online].
Available: https://www.infineon.com/dgdl/
Infineon-Automotive-Application-Guide-2021--v02
00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

[17] ——, “TPM 2.0 Protected IIoT Security
Gateway for Industrial Control Systems .”
[Online]. Available: https://www.infineon.com/dgdl/
Infineon-ISPN UseCase Lanner TPM Protected

https://trustedcomputinggroup.org/resource/tcg-tpm-2-0-library-profile-for-automotive-thin/
https://trustedcomputinggroup.org/resource/tcg-tpm-2-0-library-profile-for-automotive-thin/
https://doi.org/10.1007/978-1-4302-6584-9_9
https://doi.org/10.1007/978-1-4302-6584-9_11
https://doi.org/10.1007/978-1-4302-6584-9_12
https://doi.org/10.1007/978-1-4302-6584-9_12
https://trustedcomputinggroup.org/resource/tcg-tpm-2-0-library-profile-for-automotive-thin/
https://trustedcomputinggroup.org/resource/tcg-tpm-2-0-library-profile-for-automotive-thin/
https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2021--v02_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573
https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2021--v02_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573
https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2021--v02_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573
https://www.infineon.com/dgdl/Infineon-ISPN_UseCase_Lanner_TPM_Protected_Gateway-ApplicationBrochure-v02_00-EN.pdf?fileId=5546d4626c1f3dc3016c85fc875c00db
https://www.infineon.com/dgdl/Infineon-ISPN_UseCase_Lanner_TPM_Protected_Gateway-ApplicationBrochure-v02_00-EN.pdf?fileId=5546d4626c1f3dc3016c85fc875c00db


Gateway-ApplicationBrochure-v02 00-EN.pdf?
fileId=5546d4626c1f3dc3016c85fc875c00db

[18] O. Khalid, C. Rolfes, and A. Ibing, “On imple-
menting trusted boot for embedded systems,” in
2013 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST). IEEE, 6 2013,
pp. 75–80.

[19] R. Wilkins and B. Richardson, “UEFI secure boot
in modern computer security solutions,” in UEFI
forum, 2013, pp. 1–10.

[20] Trusted Computing Group, “Trusted Platform
Module Library: Part 3 Commands, Family “2.0”
Level 00 Revision 01.38,” 9 2016. [Online]. Avail-
able: https://trustedcomputinggroup.org/wp-content/
uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf

[21] G. Coker, J. Guttman, P. Loscocco, A. Herzog,
J. Millen, B. O’Hanlon, J. Ramsdell, A. Segall,
J. Sheehy, and B. Sniffen, “Principles of remote
attestation,” International Journal of Information Se-
curity, vol. 10, no. 2, pp. 63–81, 6 2011.

[22] T. Lenard, B. Genge, P. Haller, A. Collen, and
N. A. Nijdam, “An Automotive Reference Testbed
with Trusted Security Services,” Electronics, vol. 12,
no. 4, p. 888, 2 2023.

[23] A. Hoeller and R. Toegl, “Trusted Platform Mod-
ules in Cyber-Physical Systems: On the Interference
Between Security and Dependability,” in 2018 IEEE
European Symposium on Security and Privacy Work-
shops (EuroS&PW). IEEE, 4 2018, pp. 136–144.

[24] C. Plappert, L. Jäger, and A. Fuchs, “Secure Role
and Rights Management for Automotive Access and
Feature Activation,” in Proceedings of the 2021 ACM
Asia Conference on Computer and Communications
Security. New York, NY, USA: ACM, 5 2021, pp.
227–241.

[25] D. Lu, R. Han, Y. Wang, Y. Wang, X. Dong, X. Ma,
T. Li, and J. Ma, “A secured TPM integration scheme
towards smart embedded system based collaboration
network,” Computers & Security, vol. 97, p. 101922,
10 2020.

[26] B. Groza, L. Popa, and P.-S. Murvay, “CarINA -
Car Sharing with IdeNtity Based Access Control Re-
enforced by TPM,” 2019, pp. 210–222.

[27] O. Gilles, D. Gracia Pérez, P.-A. Brameret, and
V. Lacroix, “Securing IIoT communications using
OPC UA PubSub and Trusted Platform Modules,”
Journal of Systems Architecture, vol. 134, p. 102797,
1 2023.

[28] D. Lu, R. Han, Y. Shen, X. Dong, J. Ma, X. Du, and
M. Guizani, “xTSeH: A Trusted Platform Module
Sharing Scheme Towards Smart IoT-eHealth De-
vices,” IEEE Journal on Selected Areas in Commu-
nications, vol. 39, no. 2, pp. 370–383, 2 2021.

https://www.infineon.com/dgdl/Infineon-ISPN_UseCase_Lanner_TPM_Protected_Gateway-ApplicationBrochure-v02_00-EN.pdf?fileId=5546d4626c1f3dc3016c85fc875c00db
https://www.infineon.com/dgdl/Infineon-ISPN_UseCase_Lanner_TPM_Protected_Gateway-ApplicationBrochure-v02_00-EN.pdf?fileId=5546d4626c1f3dc3016c85fc875c00db
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf

	Introduction
	Trusted Platform Module
	Assumptions
	Proposed work
	Performance measurements
	Related studies
	Conclusion

