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Abstract. Maintenance, traditionally perceived as a reactive cost and a hin-

drance, poses challenges to efficiency when components succumb to unforeseen 

breakdowns. In addition to the financial implications, the repair process also in-

curs substantial time wastage. To overcome these obstacles and achieve enhanced 

efficiency and cost savings within the manufacturing sector, this paper presents 

a conceptual study of a technologically advanced predictive maintenance (PdM) 

approach, particularly in the realm of artificial intelligence-powered digital twins. 

The effectiveness of these solutions hinges on their data-driven nature, technical 

feasibility, and acceptance by industry stakeholders. 
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1 Introduction 

The multifaceted nature of predictive maintenance for electric powertrains entails com-

prehensive approaches to diagnose the internal physical phenomena of various compo-

nents within electric vehicle (EV) powertrains. By integrating advanced sensing tech-

nologies, data analytics, and machine learning algorithms, predictive maintenance en-

ables real-time monitoring and analysis of key performance indicators, facilitating early 

detection of faults or abnormalities. This proactive approach not only optimizes the 

performance, longevity, safety, and reliability of electric powertrains but also mitigates 

unplanned downtime, lowers maintenance costs, and enhances overall operational effi-

ciency. Through the utilization of multidimensional predictive maintenance strategies, 

stakeholders in the electric vehicle industry can achieve significant advancements in 

powertrain maintenance and contribute to the development of sustainable transportation 

solutions. 
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This study aims to investigate the facets and benefits of implementing predictive 

maintenance strategies, specifically focusing on artificial intelligence-based ap-

proaches, in the context of electric powertrains. The European Union-funded 

ESCALATE and OPEVA approach aims to assure the electric vehicle user reaches its 

current destination to boost customer satisfaction, as it offers not only a safe journey 

but also promises no more breakdowns before the destination is reached. By examining 

the multifaceted aspects of predictive maintenance, including advanced sensing tech-

nologies, data analytics, and machine learning algorithms, this research aims to explore 

how these building blocks are brought together to enhance the performance, longevity, 

safety, and reliability of electric powertrains. Furthermore, the study seeks to evaluate 

the impact of advanced predictive maintenance on reducing unplanned downtime, op-

timizing maintenance costs, and improving overall operational efficiency. Through 

data-driven insights, this study aims to provide valuable insights and recommendations 

for stakeholders in the electric vehicle industry, contributing to the development of sus-

tainable transportation solutions. 

2 State-of-the-Art 

Concurrently, extensive research is underway to enhance BMS performance, partic-

ularly in terms of predicting battery ageing and ensuring safety. These techniques also 

aim to predict battery lifespan and detect faults. To address these challenges, James C. 

Chen et al. [1]  propose empirical mode decomposition (EMD), grey relational analysis 

(GRA), and deep recurrent neural networks (RNN), whilst Y. Che et al. [2] propose 

optimized health indicators and online model correction with transfer learning for the 

RUL prediction of lithium-ion batteries.  

The practical integration of AI into power electronic applications encompasses de-

terministic and stochastic environments, data collection and analytics methods, fore-

casting techniques, and cost-effective algorithms and hardware implementations [3]. In 

recent years, physics-informed PdM methods aligned seamlessly with the strategy of 

making AI a frontrunner in e-mobility applications. Among these, Li et al. [4] propose 

a model to calculate the cumulative fatigue damage of IGBT modules in EVs to evalu-

ate the reliability. Rao et al. [5] propose a novel approach to PdM of power electronics 

by integrating optical and quantum-enhanced AI techniques. 

The electric motor, a pivotal component within the electrical powertrain of electric 

vehicles powered by batteries, operates under demanding conditions characterized by 

significant temperature fluctuations, pronounced vibrations and voltage stress stem-

ming from inverter power supply [6]. Wotawa et al. [7] employ model-based, simula-

tion-based and machine learning-based real-time PdM approach for e-motors. Rjab-

tšikov et al. [8] and Dettinger et.al [9] use a Digital Twin-based approach when dealing 

with the predictive maintenance of e-motors. 

Recent developments [10] employ AIoT-based preventive diagnostic by enabling 

recommendation and notification prediction for Run-to-Failure maintenance, planned 

preventive maintenance, and predictive maintenance for EV thermal management sys-

tem. Yi et al. [11]  utilize Long Short-Term Memory (LSTM) based Digital Twin to 
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achieve real-time temperature forecasting and analyze degradation models for lithium-

ion batteries. Dettinger et al. [12] introduce a machine learning-based model for fault 

detection in EV powertrains, employing a Digital Twin. In parallel, Bhatti et al. [13] 

advocate the application of Digital Twin technology in EVs through their systematic 

review. 

3 Digital-Twin-Powered PdM Services Architecture 

Integrating technologies like IoFog, Arrowhead, and Mimosa into predictive mainte-

nance (PdM) for Electric Vehicle (EV) powertrains can significantly enhance real-time 

data processing, communication, and overall management of maintenance activities by 

leveraging the capabilities of edge computing, interoperable automation, and standards 

for enterprise integration respectively. The PdM services are designed to be used as 

online services, in the form of PdM-as-a-Service, within a digital twin framework as 

depicted in Fig.  1. The framework has a data acquisition and management module 

which is built on a secure multi-agent system. This module is implemented as a heter-

ogeneous data flow backbone based on an Arrowhead-ioFog-Mimosa architecture (See 

Fig.  2). This module is strengthened with cyber security solutions enabling very fast 

agent data encryption and person/node authentication. The multi-agent system enables 

effective data acquisition from EVs, grid infrastructure (i.e., charging infrastructure) 

and environmental data. 

The acquired data can be classified as JSON files and stored in a cloud database, 

such as MariaDB, as proposed in the digital twin framework. There exist auxiliary 

backend services such as data and query management services, cloud services manage-

ment, security and privacy management and Identity Management System (IDMS).  

A two-way Kafka-based messaging system is designed to feed the Smart Services 

Modules which are utilized as Docker containers at the righthand side. The Docker 

containers receive the classified data in JSON format or other messages or requests 

from the secure multi-agent system and backend services. When the Digital Twin ser-

vices including AI-powered PdM solutions produce an output, these outputs are also 

delivered to the visualization and user interfaces layer through a results gateway, or as 

feedback to the Secure Multi-Agent System (for instance, in case of an anomaly). 

The framework is realized through a layered architecture (Fig.  2) that utilizes the 

combination of Arrowhead [14], Eclipse ioFog [15] and MIMOSA [16] and is com-

posed of i) Edge layer (ioFog), ii) Communication & Automation Layer (Arrowhead), 

iii) Enterprise integration layer (MIMOSA), and iv) Execution layer.  

The Edge Layer facilitates decentralized data processing, enabling real-time analy-

sis of powertrain data (such as battery voltage, current, and temperature) directly within 

the EV or local edge nodes. This layer implements LSTM or other predictive models 

on the edge for immediate anomaly detection and alerting for powertrain issues. Here 

ioFog can manage data transmission over the cloud, ensuring only relevant or summa-

rized data is sent, which is vital for efficient bandwidth usage and managing large fleets 

of EVs. This layer delivers an Edge-AI-based processing that enables localized deci-
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sion-making, and reduces the need to transmit all raw data to a central server, thus sav-

ing bandwidth and enhancing data privacy. Instantaneous actions, such as emergency 

alerts or minor adjustment suggestions, could be generated directly from the AI models 

deployed at the edge. 

The Communication & Automation Layer provides a framework for ensuring in-

teroperable communication between various systems involved in a PdM solution space, 

such as between EVs, charging stations, and maintenance facilities. This layer is im-

plemented by deploying an Arrowhead framework which is an open-source technology 

that establishes a standardized and secure interoperability platform for seamless com-

munication and interaction between diverse services and devices. The Arrowhead-

based solution facilitates automated workflows that enhance PdM, like scheduling 

maintenance activities, based on predictive insights while considering logistic and op-

erational constraints.  

 
Fig.  1. Proposed Digital Twin Framework 

The Enterprise Integration Layer is implemented by utilizing the MIMOSA 

framework which is based on the Open System Architecture for Enterprise Application 

Integration (OSA-EAI) standard. Implementing MIMOSA standards ensures consistent 

data handling and interpretation across various entities involved in PdM systems, such 

as service providers, component manufacturers, and operators. Utilizing MIMOSA’s 

OSA-EAI standards for enhanced data sharing and integration between enterprise sys-

tems and field-level entities ensures that PdM insights and actions are cohesively man-

aged and executed across the organization (e.g. fleet operator, vehicle manufacturer).  

The Execution Layer is the highest level of applications that are actively used by 

the end users such as maintenance service providers, vehicle operators, etc. The bi-

directional arrows between this layer and the Enterprise Integration Layer indicate the 

cooperative work of service maintenance scheduling and coordination.  

The four-layer architecture enables an effective data and action flow between layers. 

Data flow starts with raw data acquired from edge nodes like edge devices, gateways, 

smart grids, and/or onboard systems. Processed data and initial insights are transferred 

between the edge and communication layers. The standardized and structured data are 

propagated to the enterprise layer along with global insights and alerts. On the other 

hand, action flows can be instructions for actual maintenance activities that are 
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streamed from the enterprise layer to the execution layer. Feedback, status updates and 

any corrective actions are exchanged between the execution and enterprise layer. 

 
Fig.  2. The layered Digital Twin Architecture 

In both edge and communication & automation layers, unsupervised learning (UL) 

algorithms can be deployed for reactive control and data preprocessing as well as 

maintenance scheduling and energy management. The proposed architecture at the edge 

layer implements UL algorithms to develop local control policies that react to real-time 

data, adjusting operating parameters to enhance performance or mitigate anomalies. 

The edge layer also enables optimal energy management and creating policies that con-

sider both localized powertrain health and broader energy demands, like grid stability 

or energy prices. Physics-Informed Machine Learning (PIML) for more effective PdM 

can also be tacked both at the edge and global level. ioFog can be used to implement 

PIML for real-time analysis, using physics-based principles to enhance anomaly detec-

tion in powertrain components, ensuring that the alerts are not just data-driven but also 

physically plausible. Here, safety protocols leverage PIML to establish safe operating 

boundaries for the powertrain, using physics principles to prevent settings or actions 

that might risk component health or safety. At the automation layer, PIML models can 

be used for analysing long-term physical degradation patterns in powertrain compo-

nents, ensuring that PdM strategies are aligned with anticipated wear and tear. A unified 

model can be developed to integrate physics-based principles with data-driven insights, 

presenting comprehensive models that ensure predictive insights and prescribed actions 

that are scientifically substantiated. 

4 Conclusion 

This paper presents a digital twin framework based on a 4-layered architecture that 

integrates Edge (ioFog), Communication & Automation (Arrowhead), Enterprise inte-

gration (MIMOSA), and Execution layers. IoFog, Arrowhead, and Mimosa are utilized 
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for orchestrating physics-informed PdM and UL for EV powertrains so that organiza-

tions can create a robust, efficient, and scalable system. This integration not only en-

hances real-time data processing and communication but also ensures that the mainte-

nance activities are streamlined, standardized, and optimized for the best possible per-

formance and longevity of EV powertrains.  
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