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Abstract—The growing awareness of environmental sustain-
ability has led to new investments in the field of electric vehicles.
One of the most expensive and important components of electric
vehicles are their batteries, with battery management systems
(BMS) being responsible for their control. New regulations,
such as those of the European Union, aim to introduce battery
passports as a way to track battery lifecycle from manufacturing,
over second-life use, to recycling. Given the vast amount of
data generated during the lifecycle of a battery, the current
research is focused on combining BMS with cloud connectivity.
However, not much research has yet been done in the area of
BMS cloud security and secure data logging. To address this gap,
we propose a novel solution for secure BMS data acquisition for
on-premise and cloud environments. In this paper, we make two
main contributions: a secure data structure for BMS logging
and a secure architecture for transferring BMS data from its
source to cloud and end systems. We demonstrate the feasibility
of the design by developing a prototype with real components
and evaluate it in terms of security and performance.

Index Terms—Battery Management System; Security; Cyber-
physical; Cloud; Battery; Passport; Logging; Authentication.

I. INTRODUCTION

The energy and environmental crisis caused by ever-
increasing carbon emissions have led to an enormous increase
in demand for electric vehicles. Battery management systems
(BMS) play an important role in modern electric and hybrid
vehicles by providing safety control over the use of batteries,
their most important operating resource. They ensure the safety
of the human driver by detecting and mitigating potential
safety risks in advance [1]–[3]. As the use of electric vehicles,
e-bikes, mopeds, etc. increases, so does the need for more
batteries and thus BMS. In the recent market study published
by Meticulous Research, the battery market is projected to
reach $175.11 billion during the forecast period between 2021
and 2028 [4]. The exponential growth of the battery market
between 2018 and 2025 and the importance of the second-life
battery use case have also been observed by H. Melin [5].
The ever-growing market brings new challenges and requires
solutions that would allow easier tracking and monitoring
of batteries by their associated BMS. It is desirable to use
batteries more efficiently and enable easier replacement at the
end of their lifecycle to reduce global battery waste [6], [7].
We see two main challenges that need to be addressed in the
development of modern BMSs.

BMS data reliance. The first challenge with modern BMSs
lies in the need for efficient and easily accessible logging of
monitoring and diagnostic processes, given the vast amount
of generated data [8], [9]. Local logging devices may have
limited capacity, be difficult to access, or even interfere with
the regular operation of the BMS. On the other hand, with new
regulations in the European Union (EU) and other countries
around the world, the use of cloud systems for battery monitor-
ing is slowly becoming a reality [10]–[12]. Several research
papers have already proposed methods and models that use
cloud services to extend the usability of BMS in a system [3],
[9], [13]–[15]. Cloud systems enable the creation of battery
lifecycle profiles, a concept that considers the collection and
storage of important battery-related data from the BMS. This
is done to extend user services and add external monitoring
and diagnostic control by providing higher computing power
and faster processing [3], [16].

Notably, the use of cloud connectivity with BMS offers:

• Battery life tracking and predictive support in the form
of artificial intelligence or digital twins [3], [17].

• Increased computational power and faster processing of
BMS-related diagnostic data, such as state of health
(SoH) and state of charge (SoC) [18].

• Faster fault detection and battery age improvement [9].
• The use of ”swarming” to collect and use data for pre-

dictive maintenance of not just one but multiple systems
in a group, e.g., for vehicle fleets [3], [9].

However, relying only on cloud services has three major
disadvantages [8], [18]: (i) it requires a constant Internet
connection e.g. if an accident occurs in a tunnel, there is no
way to safely rely on the data during this transition, (ii) there
may be delays due to the multi-level technological services that
provide update control, and (iii) changes in data legislations
and business models that may affect or complicate future
ownership or access to the stored cloud data. An adequate
BMS data service design should focus fully or partially on
the use of local, i.e., on-premise, data services alongside
conventional cloud connectivity. As Neubauer et al. [19] noted,
it should be possible to handle both the batteries’ on-site
measurements, as well as to track the average use over time
to facilitate the second life use case.



BMS security. The second challenge for modern BMS
is to provide an adequate and lightweight security design.
Most of the current BMS cloud research focuses on predictive
estimation, digital twins, and machine learning [3], [17], [18],
leaving the area of BMS cloud security largely unexplored.
A security architecture for advanced BMS communications
must address all data transmission layers. At the BMS level,
it is important to consider the security of collected battery
diagnostic data. Manipulation of diagnostic data by malicious
parties can lead to hazards, such as thermal runaway in vehi-
cles [20]. It is also important to ensure that BMS data is only
processed by authorized parties to protect user privacy [21].
In addition, BMS cloud connectivity suffers from threats and
vulnerabilities common to general networks. Thus, a BMS
must always consider protection against man-in-the-middle
(MitM) attacks, unauthorized access to storage, and the use
of outdated protocols [8].

Contributions. Our goal is to propose a solution to the
upcoming BMS challenges and present a hybrid logging
architecture that combines both on-premise and cloud services
for BMS data logging. To this end, we propose:

• A general BMS data structure independent of any topol-
ogy or use case aimed at BMS monitoring and diagnostic
data handling, while addressing security requirements.

• Furthermore, we present a layered model for a secure
BMS cloud architecture based on a centralized gateway.
While several papers have been published recently on
cloud utilization with BMS, most of them are based on
data-driven models, data propagation, or cloud-enhanced
algorithms.

To the best of our knowledge, this is the first work in the field
of cloud BMS that places data logging structure reliance and
security as the primary focus.

II. BACKGROUND

A. BMS and cloud computing

A BMS is a system responsible for the safety control of
a large set of battery packs. Namely, they are accountable
for battery cell monitoring, diagnostics, overall system safety,
charging, cell balancing, and controlling the optimal discharg-
ing use of battery packs [1]–[3]. There are several established
BMS network topologies, with modern ones being primarily
based on modulated and distributed architectures having a
central BMS controller with several battery pack controllers
(BPC) [16], [22]. The majority of today’s cloud systems are
based on providing services for data storage, processing, and
sharing. They aim to provide flexible and extensible services to
end users behind a complex facade. As such, cloud systems
provide modern solutions for processing the vast amount of
BMS data and enable services such as remote monitoring and
predictive maintenance [17], [18].

B. Logging BMS data

Modern BMS are responsible for processing a large amount
of generated data. This data must be logged, either internally
in the BMS with special modules or externally, e.g. in the

cloud. The challenge here is to specify a flexible BMS data
structure for efficient transmission. The size of the logged data
depends on the tracked parameters, sampling frequency, and
compression [8]. The BMS are responsible for interpreting
the diagnostic data derived from the BPC or directly from the
battery cells. For our analysis, we will focus on the following
three main groups of data: (i) monitored data; which considers
on-board read sensor or other measured data, e.g., battery cell
voltage and temperature, (ii) diagnostic data, i.e. derived data
based on observations, usually from a BPC, another module,
or directly from the main BMS controller, and transmitted
either as raw data or information such as SoC or SoH, (iii)
fault diagnostic data, i.e., raw data derived from the register
responsible for tracking the parameters of individual battery
cells. Traditionally, most of the data generated on the BMS
side was only stored locally for active monitoring. With the
new initiatives related to the battery passport and secondary
use, portions of this data would also need to be stored or sent
to other systems to maintain tracking of the battery pack life
cycle [11], [12]. For the remainder of this paper, we will refer
to any BMS stored data as the BMS logging (log) data.

C. Battery passports and second life

Electric vehicle (EV) batteries reach the end of their life
after 8 to 10 years of use, i.e., after they have dropped to
80% of their full capacity [7], [23]. After that, the batteries
are either recycled or disassembled [5]. This is becoming a
problem as the market for batteries keeps increasing, the rate
at which they are recycled becomes limited and expensive,
which also creates more environmental waste [5]. There is
an initiative to allow batteries that have reached the end of
their life in EV to be used for other applications, such as
self-consumption in households or transmission deferral from
EV to power grids [7], [24]. The EU Commission proposes
the use of battery passports to track the lifecycle of batter-
ies [10]–[12]. The battery passport is intended to be a digital
representation of a battery that conveys all-important product
information [10], [12]. An extension of this concept would be
the battery e-passport, which could also dynamically record
battery charge and discharge cycles, diagnostic information,
faults, cell health, etc. This information could be used for
rapid processing when the battery gets a second life in other
applications during the disassembly process [5], [7]. Cloud
systems provide such a solution, but there is currently no clear
answer to secure BMS processing from the local to the cloud
level, which we aim to extend in this work.

III. THE NOVEL SECURE BMS DATA STRUCTURE DESIGN

Based on the BMS lifecycle monitoring requirements, we
propose a BMS data structure design based on a hierarchical
distribution and differentiate between (i) log blocks, (ii) BMS
blocks, and (iii) secure BMS blocks. A “Log block” (List. 3
with List. 1 & List. 2) contains a log header and a log body,
where the log body contains the logged data based on a given
structure. Log blocks form a payload that is represented by the
“BMS block” (List. 4). To keep track of the sampling order,
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Fig. 1. BMS block data chain structure for logging of BMS lifecycle data.

the BMS blocks are intended to be stored in a data chain
structure, as shown in Figure 1. Each BMS block contains a
pointer to the first log block, which in turn contains a pointer
to the next log block in the sequence. They are intended
to encapsulate one BMS sub-system, with the “log chain”
containing individual log samples per battery pack. The BMS
block data chain identifies each individual sample point. In
this example, ‘M’ indicates the number of currently logged
BMS blocks in a BMS sub-system, while ‘N’ presents the total
number of log blocks per one BMS block. ‘K’ is the number of
tracked BMS sub-systems. The sequence of the BMS blocks
is determined by their timestamp field. Battery passport data is
contained in the metadata field. To save space, metadata may
be sent only when its contents change, for example, when the
BMS sub-system changes its configuration or its host system.
An array can be implemented that tracks BMS blocks with
major status changes. Each time a new BMS block is received
that contains metadata, the tracker array is incremented by the
identifier of that block.

The advantage of the proposed data model structure is that
it can be used across all different BMS topologies [22] with
the following considerations for one full sample:

• Centralized: 1 BMS block, 1 Log block.
• Modulated: 1 BMS block, N Log blocks
• Distributed: 1 BMS block, N Log blocks
• Decentralized: K BMS blocks, N1, ..., NK Log blocks
To guard against eavesdropping or other potential manipula-

tions with logged BMS data, the application data exchange is
protected via the ”Secure BMS block” (List. 5), which uses the
BMS block and attached log blocks as input for the encryption
payload. Once the secure BMS block has successfully arrived
at the end system, it can be decrypted and integrated into
the log chain structure. Figure 2 shows the structure of the
secure BMS block that is transmitted with each log sample.
The secure BMS block consists of the unencrypted security
header, the encrypted BMS block, and a security tag as a
footer. The header contains information such as the current
BMS secure identifier and cipher suite code. The security tag
is used to verify the authenticity and integrity of the BMS
block. It can be computed using the Message Authentication
Code (MAC) or another security-related tag operation. The
BMS block also contains its own header, logged data, and
optional metadata. We propose that the header of the BMS
block contain at least a unique identifier, a timestamp, the
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Fig. 2. Proposed design of the secure BMS data block.

classifier ID, and the pointer to the first BMS log block. The
protocol block contains at least its identifier, the identifier of
the next block in the chain, and the block length.

Struct LogSample contains
Log Meas* measurements;
Log Diag* diagnostics;
Log Fault* fault regs;

end
Listing 1: Data logging sample data structure.

Struct LogBlockHdr contains
int block id;
int next block id;
uint32 block body len;

end
Listing 2: Log block header data structure.

Struct LogBlock contains
LogBlockHdr log header;
LogSample log body;

end
Listing 3: Log block with log header and body entries.

Struct BmsBlock contains
uint32 bms block id;
uint32 timestamp;
uint16 unit id;
int init log block id;
uint16 metadata len;
Bms Metadata bms metadata;

end
Listing 4: BMS block structure with optional metadata.

Struct SecBmsBlock contains
uint16 version;
uint16 length;
uint32 sec bms block id;
uint32 sec bms block serial;
uint16 cipher info;
uint16 enc bms block len;
uint8* iv;
uint8* enc bms block;
uint8* mac;

end
Listing 5: Secure BMS block for symmetric crypto.
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IV. SECURE BMS DATA ACQUISITION ARCHITECTURE

A. Security requirements

We observe the secure architecture from two perspectives:
(i) the security of “cloud layers”, i.e., the security on and from
the central gateway, to the cloud acquisition system, and finally
the end system, and (ii) BMS sub-system and its network.

For a BMS, security can be considered as (i) security during
data transmission and (ii) security within the device. We want
to ensure that the data from the source (battery sensors) to
the end device (cloud system or end-user systems) is not
compromised [6], [22]. Attacks targeting the BMS itself
would be difficult to carry out because BMS communicate
with battery packs that are enclosed and isolated. Still, various
attacks could take place, usually in the form of spoofed devices
or remote attacks if a vulnerability is found [6], [16]. MitM
attacks are possible either between the BMS and the central
gateway or when connecting to the cloud system. Data must
be protected against these forms of attack by guaranteeing
its authenticity, integrity, and confidentiality [21]. In addition,
protection must be provided by message counters and inspec-
tions to ward off various replay attacks. Other attacks may
take the form of denial-of-service (DoS) attacks, which would
target either the cloud systems or the local networks. The
attacker can also target the log content itself by launching
attacks on delayed, reordered, or manipulated packets [25].
Accurate implementation and validation on the end system
side should be performed to mitigate these types of attacks.

To support the proposed security architecture and secure
BMS data structure, we observe the following design points:

• The security architecture with the cloud system is done
over a trusted and verifiable service.

• The key generation and distribution by the original equip-
ment manufacturer (OEM) are based on a trusted design,
i.e., the end system device can securely receive the key
necessary to decrypt the received BMS log data.

• Security operations are done over a trusted secure module
to mitigate hardware-based vulnerabilities.
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Fig. 4. Suggested secure BMS block data on-premise processing methods: a)
security layer already added on BMS, b) security layer added on the gateway.

B. System layers

While different publications might refer to them with differ-
ent notations, BMS cloud architectures generally consist of a
perceptual layer, a network layer, and an end-user application
layer [2], [15]. We further divide these layers to account
for two additional middle layers to consider the on-premise
BMS activities. Our main architecture design is presented in
Figure 3. The system consists of five main layers: (i) BMS sub-
systems, (ii) internal local network, (iii) central gateway, (iv)
cloud data acquisition system, and (v) end system backend.

BMS sub-system. This layer considers the BMS and its
connected battery packs as an independent entity. As an
enclosed system, it is difficult to perform attacks from the
outside. Nevertheless, it is recommended to provide authen-
tication at the device level. The main BMS controller is
responsible for data collection and preparation of the secure
BMS blocks. This should be done on the device using a secure
module. Due to widespread use, it is proposed to rely on
symmetric encryption algorithms, specifically the traditional
block ciphers, e.g., Advanced Encryption Standard (AES) with
modes or authentication encryption (AE) primitives.

Internal local network. At the internal network system
layer, device authentication, key derivation, and session estab-
lishment are performed using an appropriate security archi-
tecture [26]. This considers the communication between the
BMS controller, the gateway, and any other local device. The
secure session is established using either static or dynamic
keys, taking into account perfect forward secrecy [27].

Central gateway (GW). The central device responsible
for collecting BMS log data. It enables the connection with
the cloud system. It is also the secure authority for the
local network. For performance reasons, the rest of the data
encapsulation is done on the GW side to prepare the BMS
blocks for transmission over the cloud to the end system.

Cloud data acquisition system. Cloud systems rely on
proven and robust security protocols. Cloud data communica-
tions for IoT solutions typically rely on the use of the underly-
ing Transport Layer Security (TLS) or Datagram-TLS (DTLS)
layers. At the application layer, DTLS is often used with the
CoAP protocol and TLS with Message Queuing Telemetry
Transport (MQTT) [28]. DTLS improves performance, but
data might be lost, requiring retransmissions. The use of the
right protocol depends primarily on the intended use case, with
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BMS relying on stricter safety standards and regulations that
must be supplemented. It should be noted that both TLS and
DTLS provide data protection from BMS to the gateway, but
not for the end-to-end devices, i.e., from a BMS to the end
device, which is why we also consider security at other layers.

End system backend. This considers any server or user
device that handles the BMS log data for data processing,
visualization, etc. Specifically, it is a device that relies on the
battery e-passport services for lifecycle tracking and one that
is authorized to access the encrypted secure BMS block data.

C. End system infrastructure discussion
For the presented architecture, an effort was made to keep

the design generic and flexible regardless of the underlying
session key exchange design. The end system receives the
encrypted BMS data, but the means of processing this data
is left open. Either the same or an additional external server
would need to be used to disseminate and share the necessary
certificates and other security-related configuration data. A
similar concept could be adopted from the proposed standard
ISO 15118 regarding the distribution of certificates to the
respective OEM [29], [30]. Security solutions such as end-to-
end encryption with adjustments could also be employed [31].

For processing individual BMS blocks to secure BMS
blocks, we observe two approaches as seen in Figure 4:

a) Security functionality and storage are performed on the
main BMS controller, i.e., it sends full encrypted data.

b) Security handling is performed on the gateway device.
We focus on the first approach, where data processing is

performed on individual main BMS controllers. Here, the
gateway acts as a buffer and bridge to ensure that each
data block is correctly received and processed to the cloud
service. This is an advantage for ad hoc BMS sub-systems
that may store intermediate data between sessions or rely
only on the on-premise use case. It is also more flexible
for decentralized topologies where processing between BMS
units is independent and therefore there is no bottleneck at the
gateway. In addition, there are systems where there may not
be a secure gateway and communication with cloud systems
is done directly through the main BMS controller.

V. SYSTEM PROTOTYPE IMPLEMENTATION

We implemented our proposed design on real hardware to
demonstrate the feasibility of the presented methods, shown
in Figure 5. A BMS emulator from NXP Semiconductors was
used, consisting of an S32K144 microcontroller as the BMS
controller, an RD33771C as the BPC, and a battery emulator
that generates battery voltage and temperature data. To emulate
local network communication, we used a Raspberry Pi 4 as
the gateway device. Appropriate software was implemented
and integrated for both the S32K144 and the Raspberry Pi to
enable encapsulation of the test data and secure communica-
tion transmission. The security functionality was provided via
the BearSSL library [32]. Security communication handling
and secure BMS blocks were implemented based on an exist-
ing BMS diagnostic functionality. The security architecture
for authentication and session key derivation is based on
an Elliptic Curve Qu-Vanstone model. The communication
between the gateway and the BMS controller is done over
a serial link configured at a baud rate of 57 kbps, and uses
the implemented network stack discussed in Section V-A. A
symmetric cryptographic model was used for the secure BMS
block, relying on the AES and hash-MAC (HMAC).

A. Test suite communication model
The test suite relies on the use of different network commu-

nication layers. The structures of the data packets used at each
layer can be seen in Figure 6. The format of the data layer
can be tailored to the needs of the target system. In our case,
it is aimed at the communication between the secure gateway
and the BMS controller, but it remains flexible and open.

The application layer is responsible for transmitting
application-specific data, i.e., log data. The secure BMS block
is included as a payload for our test cases. The application pay-
load data is encrypted and tagged along with the added header
to protect data confidentiality and integrity in the internal
network. The transport layer allows for the fragmentation of
large payloads. In our test case, the data-link layer packets can
only contain up to 255 bytes in one packet, so the additional
transport layer is required. It is modeled after the ISO 15765-2
standard, which is also used in similar environments [33].
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Fig. 7. Derived BMS log data model for the lifecycle monitoring.

B. Cloud setup

Cloud hosting is done on an Amazon web server (AWS).
The gateway communicates with AWS and sends data using
the secure MQTT protocol. After receiving the BMS block
data, AWS propagates it directly to the assigned end system
using an HTTPS REST push request. Both rely on the TLS
protocol. In our test environment, the end system is represented
by a Raspberry Pi 4 hosting a local server. The end system
hosts a web application to display the captured BMS lifecycle
data, running on a Flask server.

C. BMS data structure preprocessing

The battery log data collected by BPC and processed by
BMS is based on the structure described in Section II-B and
with List. 1, with the format shown in Figure 7. We optimize
the processed data to incur as little overhead as possible. The
monitored data includes a total of 3 bytes, one for the ID
and two for the raw value. At least 3 bytes are allocated to
the diagnostic data: one for ID, one for the diagnostic status,
and one for the length of the additional data. The additional
data is application specific. If there is no additional data per
diagnostic entry, the length of the additional data is zero. The
total amount of data for a log sample is 162 bytes. We assume
that our system will have no more than 256 monitoring and
diagnostic entries per BPC, so only one byte is reserved for
identification. Otherwise, this entry could also be extended.

VI. EVALUATION

A. Security analysis

We analyze the proposed design in terms of achieved
security. The analysis is based on the security requirements
described in Section IV-A. For our analysis, we derive as-
sets {A}, threats {T}, countermeasures {C}, and assump-
tions {As}. The following assets are derived, i.e., the ob-
jects of protection: (A1) BMS log data, (A2) gateway-to-
cloud payload, and (A3) cloud-to-end-system payload. To
limit the security analysis to our proposed solution, we make
the following assumptions: (As1) battery sensors, BPC and
their channels are considered secure and trusted, (As2) no
attack in the form of physical tampering is possible, (As3)
security functions and keys are stored in a protected storage
environment, (As4) cloud and end system are protected against
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common online threats. The security analysis model is built
using the data flow diagram (DFD), with the derived model
and results shown in Figure 8.

From the analysis, we list each potential threat with the
targeted asset and analysed countermeasure strategies. Under
“network attacks”, we consider eavesdropping, tampering,
replay, and MitM attacks on the messages. The threats are:

• [T1] Network attack on the BMS sent log data 7→ (A1),
(C1) using secure BMS block with encryption and MAC,
and with (C2) pre-established secure network session.

• [T2] Spoofing attack on the gateway 7→ (A1), (A2),
(C3) the gateway is a secure authority with authentication.

• [T3] Network attack on the pushed cloud data 7→ (A2),
(C4) uses secure MQTT, and TLS with certificates.

• [T4] Spoofing and privacy attacks on the cloud 7→ (A2),
even if compromised, BMS data is protected with (C1).

• [T5] Network attack on the end system transfer 7→ (A3),
(C4) again, with TLS and HTTPS for the pull request.

• [T6] BMS log data confidentiality compromise 7→ (A1),
similar to [T4], (C1) mitigates any unauthorized readout.

B. Overhead analysis

The data overhead comes in the form of additional header
data. It can be divided into two parts: static and dynamic data.
The static data has a fixed size, regardless of the amount of
processed log data for each secure BMS block. Here we refer
to the variable sizes from Section III. Both secure and standard
BMS blocks require 16 bytes each, with each additional log
block requiring 12 bytes for its own header, regardless of the
total size of the log body. Thus, the formula for calculating
the total header size is 32+12∗X bytes, where ‘X’ is the total
number of log blocks. The dynamic component entails only the
metadata in the BMS block, which is optional and depends on
the implementation. It also depends on the underlying cypher
protocols, i.e., larger block sizes mean larger key and MAC
values. The total log block header size is also dynamic, as it
depends on the total number of log blocks, i.e., BPC. Figure 9
shows the theoretical data overhead relative to the total secure
BMS block size with variable log block length, where Table I
shows the overhead analysis for the test suite with a variable
number of log blocks, i.e., each with a size of 162 bytes.
As noted, the secure BMS block data structure allows for
minimal impact on overhead when deployed in a real-world
environment, as it does not scale with the log block size.



TABLE I
OVERHEAD PER BMS BLOCK COMPARED TO THE NUM. OF LOG BLOCKS.

# of Log Blocks 1 2 4 8 12 16 32

Overhead (%) 21.4 14.7 11.0 9.0 8.3 8.0 7.4

Fig. 9. Secure BMS block overhead in relation to log payload for one block.

C. BMS block encoding analysis

We analyze the encoding on the BMS controller using: (i)
real hardware with emulated battery data, and (ii) simulated
log input to the BMS controller for greater sizes. Under
encoding, we consider the time of secure BMS block prepa-
ration after sampling and also the secure local network packet
encoding. Table II shows the average results after one hundred
test runs for individual encoding phases using emulators. The
standard deviation is not included as it was negligible and
< 0.01ms for all test cases. As concluded, most of the
encoding time is spent on security functions, which means
that their optimization primarily affects the duration of the
encoding process. Figure 10 shows the total encoding time for
the simulated data. It shows the linear growth of the encoding
time for three log block sizes compared to up to 10 BPC.

For the gateway, we want to ensure that the following goal is
met: keep the transmission and processing time at a minimum,
with the lowest time equal to the total sampling and processing
time on the BMS controllers. The time for the decoding of the
secure BMS blocks, i.e., the decryption from the application
layer, MAC verification, and data extraction, is negligible
compared to the total BMS processing time. Full network
decoding accounts for 1.35ms± 0.11ms, where decoding of
the secure BMS block is 0.48ms±0.01ms. We note that this
metric is highly dependent on the system and implementation
used, but we can assume based on the devices used for this test
suite that the same criteria would also be met in real systems.
The sampling rate of the battery data is application dependent,
but in our test suite, it was ≈ 112ms per BPC.

D. Transmission measurement

The tests were performed with one BPC on real hardware.
The first step is the transmission from the BMS to the gateway,
which takes 85.2ms±3ms. After decoding, the transmission
via the gateway (Rasp. Pi 4) to the cloud (AWS) works on the
device shadow principle, i.e., data is automatically forwarded
when the BMS shadow is updated to ensure that log data
is read only when needed. This step requires a total of
1.37 s ± 0.2 s per request. After receiving the data from the
gateway, the AWS forwards it to the end system (Rasp. Pi 4),
which then decodes it and further processes the BMS block,
requiring only 1.6ms ± 0.4ms. The Rasp. Pi measurements

TABLE II
BMS BLOCK ENCODING TIME WITH THE EMULATED DEVICES.

Encoding Log body BMS block Secure block Secure network

1 BPC 0.09ms 0.24ms 18.16ms 20.68ms

2 BPC 0.17ms 0.38ms 23.63ms 26.33ms

Fig. 10. Simulated BMS log encoding time for 117, 174 & 192 B log sizes.

Fig. 11. Complete implementation run times for lifecycle monitoring with:
a) variable additional log data, b) incrementing number of cycles.

were averaged after one hundred runs. We have also tested
decoding by adding additional data per message at various
intervals up to 1 kB, but found only a small increase in
processing time. The reported time for the additional 1 kB
payload is 1.39 s±0.21 s for the gateway and 2.2ms±0.9ms
for the end system. For a complete run, we took measurements
from the battery sampling to the end system, as shown in
Figure 11. The first plot shows the variation in time over the
increase in additional logging data for one hundred cycles,
while the second plot shows the total time for a different
number of sampling cycles with no additional data.

We see that the main bottleneck is in the transmission of
data to the cloud system, where multiple BMS sampling cycles
can be performed during one cloud request. However, as men-
tioned earlier, even without considering further optimizations,
the data is temporarily stored on the gateway device and can
be pushed on the next request. The BMS can continue to safely
sample new data without having to change its operating rate.

VII. RELATED WORK

The use of the cloud in conjunction with BMS has gained
significant momentum in recent years, although many ques-
tions remain, especially those related to data storage and
distribution of services [13]. While most of the publications
are from recent years [15], some of the earlier proposals
came from industry, notably from Fujitsu, where a system was
envisioned that combines the use of cloud services for battery-
sharing information between BMS [14]. More recently, Yang
et al. [15] present a BMS cloud architecture based on the cyber
hierarchy and interactive network framework, although they do
not look into the BMS data acquisition design.

Digital twins are becoming increasingly associated with
BMS in the context of cloud connectivity. In this area, Li



et al. [3] describe a model for comparing measured battery
data and estimated digital twin data, with estimates based
on the use of extended H-infinity filters and particle swarm
optimization. Similarly, Wu et al. [17] present a cloud-side
data-driven solution for BMS SoH estimation by focusing on
machine learning methods for input noise reduction and using
random forest regression to build a battery degradation model.

Concerning data logging, Mansor et al. [34] propose a
secure logging approach for vehicles based on the use of
mobile and cloud applications. Their focus is on the use of
hardware security modules for in-vehicle units, such as those
proposed in the EVITA project [35]. For solutions specifically
targeting BMS, Zhou et al. [8] present a frequency division
based storage and compression method that can be used for
BMS log data. In their work, they also present three main
requirements for using large battery storage. Among them, the
limitations of the communication technology used in terms of
data rate as well as the duration of data storage are argued. In
our paper, we propose a design that is independent of these
system constraints. However, we do consider the amount of
argued data as one of the requirements which we discuss in
Sect. III and implement in Sect. V. The paper also points out
the possibility of bottlenecks when transmitting a large amount
of BMS data. Our design provides a solution to this challenge
by partitioning the task management of data acquisition and
forwarding when a central gateway is considered.

VIII. CONCLUSION

In this paper, we have presented a novel approach to
secure BMS lifecycle monitoring considering both on-premise
and cloud environments. The proposed architecture has been
developed in mind for the current and upcoming use cases
concerning battery passports and regulations. The design al-
lows for intermediate secure storage of BMS blocks on a local
gateway device, before they are able to be further processed
on the cloud and end systems. The BMS data is securely
processed from the main BMS controller, over the internal
network, to the cloud service and end system. A demonstrator
has been successfully implemented to evaluate the design’s
performance in real-world environments. For future work, we
see solutions such as OSCORE [28], aimed at constrained IoT
devices, as a potential extension to the current security design
on the local BMS network layer. Additionally, it is planned to
cover modern solutions used for plug-and-charge services and
create an adaptive layer with the current data structure design.
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