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Abstract—Electric vehicles (EVs) have long been recognized as
a solution to the shortage of fossil fuels and the environmental
problems associated with increasing CO2 emissions. However,
charging an electric vehicle can take significant time at certain
charging stations. Additionally, the limited deployment of charg-
ing stations is a significant barrier to the widespread adoption
of electric mobility (e-mobility). In fact, many drivers struggle
to locate a convenient charging station before their vehicle’s
battery runs out. This study introduces a novel approach to
addressing the issue of congestion at public charging stations
and reducing the amount of time drivers spend waiting in line
by predicting their occupancy. Previous research has relied on
traditional Deep Learning (DL) techniques for prediction, which
require centralized data collection. Nevertheless, each Charging
Station Operator (CSO) holds sensitive data about its charging
stations and users that cannot be shared with external parties.
To address these privacy concerns, we propose a Federated Deep
Learning approach where each CSO trains a DL model locally
and then sends the model updates (or parameters) to a server for
aggregation. Experiments on a real-world dataset demonstrate
that predicting occupancy using the Federated Deep Learning
approach achieves promising results (86,21% of accuracy and
91,49% of f1-score ), guarantees privacy, minimizes data transfer
costs over the network, and allows individual CSOs to benefit
from the rich datasets of others without sharing their sensitive
data.

Index Terms—Charging Stations, Federated Learning, Deep
Learning, Data Privacy, Data Sharing, Communication Cost

I. INTRODUCTION

With higher expectations to meet the Paris climate agree-
ment, recent years have seen considerable progress in tran-
sitioning to electric vehicles (EVs) to achieve the goal of
100% emission-free transportation in the future. For instance,
in 2019, there were over 2.1 million electric car sales in the
world, and the number of Battery Electric Vehicles (BEVs)
in Europe reached (1,125,484) in 2020 [1]. Nevertheless, the
poor density of charging infrastructure and accessible charging
networks is one of the reasons for limited electric vehicle
adoption in some countries. Accordingly, EV drivers often
experience delays due to the lack of available charging stations
and long wait times. In the European Union (EU), charging
points with a capacity of 22kW or less are dominant. Only
one in nine fast chargers (with a total of more than 22kW)
represents a fraction of 11% of the European infrastructure
network. Charging an electric vehicle using one of these low-
tech power can take several hours [2]. Therefore, planning the

next charging session or forecasting charging point occupancy
is crucial to optimally manage this modern transportation
system. Significantly, this will help drivers better plan their
charging processes and thus convince people to go electric
by making the charging process as simple as refuelling is
today. Predicting occupancy will also facilitate scheduling
maintenance of charging points during periods of low usage
[3] and allows Charging Station Operators (CSOs) to manage
the available grid resource better.

In recent years, with the emerging Artificial Intelligence
(AI) technology, several centralized deep learning (DL) models
have been proposed to forecast EV charging stations occu-
pancy [4H6]. However, centralized training can raise privacy
concerns because of data sharing with a central server or entity.
To bypass this shortcoming, we propose a Federated Deep
Learning framework to predict charging station occupancy.
The framework allows CSOs to collaborate in a learning
system without sharing their data.

The main contributions of this article can be summarized
as follows:

« An efficient Deep Federated Learning based architecture
for EVs charging stations prediction is proposed. This
allows CSOs to contribute to the learning process without
revealing sensitive data about their charging station usage.
Only the learning parameters of the model are shared with
a centralized server.

o Three federated deep learning models based on Long
Short-Term Memory (LSTM), Bidirectional LSTM (BiL-
STM), and ConvLSTM have been investigated in this
study to predict EV charging stations occupancy. This
choice is motivated by the capability of these models to
efficiently model and handle time dependencies in time-
series data [[7H9].

o This is the first study introducing a decentralized ap-
proach for EVs charging stations occupancy prediction
as an alternative to centralized systems that are prone
to single points of failure and do not provide private
data protection. Our proposed Federated Learning (FL)
architecture includes relevant e-mobility actors, with each
CSO serving as an FL client that trains the model locally
without sharing their data with others.

o The effectiveness of the proposed approach was thor-



oughly tested using a real-world dataset from the City of
Dundee and compared to centralized and local methods
using different metrics.

The remainder of the paper is organized as follows. Section
discusses the related literature on predicting EV charging
stations occupancy, while Section presents our proposed
system architecture, which is based on FL and DL models.
In Section we describe the experimental framework and
analyze the results obtained from training various models.
Section |[V| concludes the paper and highlights potential future
works.

II. RELATED WORK

There have been several studies in the literature on issues
related to electric vehicle charging systems. Some researchers
proposed methods to predict the energy demand of electric ve-
hicles, analyzing electric vehicle behavior among households
or recommending charging stations to reduce waiting time.
However, there is a paucity of literature on forecasting the
availability of charging points. Related work in EV charging
stations can be divided into two categories: (i) statistical
methods and (ii) artificial intelligent algorithms. The first
category considers methods based on the theory of probability
and statistics. For example, in [L0], a Monte Carlo simulation
based on probability distributions to forecast the charging load
of plug-in electric vehicles (PEVs) in China is presented.
Lee et al. [11]] used Gaussian mixture models to understand
user behavior and predict each charging session’s duration
and energy demand. In [12], a different method is presented,
where Markov chains are used to model EV charging stations’
occupation. The model considers factors such as the distribu-
tion of vehicles in charging stations, average plug time, and
amount of energy withdrawn to predict the availability of a
single charging station and its consumption profile. The second
category focused on predicting occupancy for each charging
outlet using artificial intelligence methods. For instance, a deep
learning approach has been conducted recently [6] to predict
availability by taking advantage of both dynamic (e.g., daytime
and weekday) and static information (e.g., mean occupation
for a given time of day). The goal is to accurately predict
the future occupancy of a charging point for a given period,
such as 10 minutes to several hours. The model can only
make predictions for each charging point individually. Authors
in [13] discussed features’ importance and the characteristics
of charging stations that can influence the predictability of
occupancy; they applied logistic regression models. Similarly,
Soldan et al. [14] developed a big data streaming architec-
ture that receives real-time data from charging stations and
provides the occupancy probability in the next 15 minutes.
Hybrid LSTM neural networks were proposed in [S[]; they
combined historical charging occupancy sequence data and
charging occupancy rate and then trained a hybrid LSTM
neural network. The results show higher performance for
short-term (10 minutes) and long-term predictions (2 hours).

Note that all the studies mentioned above focused on
forecasting EV charging station availability using centralized
training methods, where the data is collected and stored
in a central server. Nevertheless, these methods may raise
concerns about confidentiality due to the sensitive nature of
the collected data. For instance, this data may include details
about charging sessions, such as duration, energy dispensed,
current and voltage, and data about the drivers using the
stations. This information could be valuable to competitors or
used to track vehicles and predict drivers’ habits. To comply
with GDPRF_], we propose an FL [[15] framework that involves
training DL models using multiple datasets distributed across
various Charging Station Operators. The only information that
is transmitted between CSOs and the central server is model
weights.

III. FEDERATED DEEP LEARNING FRAMEWORK
DESCRIPTION

In this section, we introduce federated learning and describe
our solution’s architecture and the learning process.

Federated Learning is a collaborative approach for training
machine learning models across multiple independent devices,
referred to as clients. Clients use their locally collected data
to conduct a training process. The updates from all clients are
then aggregated by a centralized server to build a new global
model, which is then distributed back to the clients for further
training. The cloud server aggregates client updates using an
aggregation algorithm, such as Fed-Avg [16].

Fig. |1| shows the most relevant subsystems of the electric
mobility ecosystem:

e CSO: is responsible for installing and managing the
charging points, as well as maintaining the EV supply
equipment (charging connectors). Therefore, CSO man-
agers own all data related to the usage of their charging
stations.

o ¢-MSP: e-Mobility Service Provider offers EV charging
services, including access to charging stations and pay-
ment facilitation, by signing agreements with one or more
CSOs.

e EV Users: are individuals who operate electric vehicles.

As shown in Fig. [2] the data for charging stations in a given
geographical area (e.g., a city) is held by different CSOs. We
propose a collaborative DL architecture to protect this data
from leakage and reduce communication costs. This approach
allows each CSO to train a local model using data from
their charging stations, while a cloud server orchestrates the
learning by aggregating the local models to create a globally
trained model. This globally trained model can then be used to
predict the availability of charging stations, providing valuable
insights to users and stakeholders. Local models are trained by
each CSO using data from their charging stations generated
locally. A cloud server that may belong, for example, to a
public authority orchestrates the learning by aggregating the

General Data Protection Regulation https://gdpr-info.eu/
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Fig. 1: Stakeholders (or actors) involved in an e-mobility
system inspired by [17].
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Fig. 2: EV charging stations prediction: FL. Architecture.

local models to get a globally trained model. The federated
learning process typically follows these steps in each iteration:

o Step I: The cloud server randomly initializes a DL model
M? and sends it, along with characterizing hyperpa-
rameters, to all participating Charging Station Operators
(CSOs).

e Step 2: Each CSO k trains the received model using their
locally-stored data Dy and sends the weights of the local
model M, back to the centralized server.

o Step 3: The server calculates new weights from the
weights received from all clients using the Fed-Avg
algorithm, resulting in a new global model, M1,

o Step 4: The server sends the updated model M+ to all
clients for another round of training.

The training process ends when the loss function reaches
convergence.

IV. EXPERIMENTS AND RESULTS ANALYSIS

This section aims to provide an overview of the real-world
dataset and the pre-processing steps for creating time-series
data. It also outlines the selection process for FL architecture
parameters and hyperparameters. Finally, the proposed FL
framework is evaluated.

A. Data description

In this paper, we consider a real-world dataset from the open
data portal of Dundee City, UKEL containing 8870 charging
sessions from July 01, 2018, to August 01, 2018. The dataset
includes three types of charging stations based on power
capacity: slow stations (7kW), fast stations (22kW), and rapid
stations (> 43kW) [3]. In this study, 53.9% of sessions
were recorded using slow chargers, 28.4% at rapid chargers,
and 17.7% at fast chargers. Outliers with abnormal charging
duration patterns were removed from the dataset, including
sessions with charging times longer than 20 hours or shorter
than 10 minutes. These outliers may indicate errors in record-
ing or a fully charged vehicle occupying a charger. The EV
charging stations occupancy prediction is influenced by vari-
ous factors, including charger usage on weekdays/weekends,
charging power, energy supplied, charging demand, EV battery
capacity, and others. To enhance the dataset’s limited features,
the following features were generated:

In this study, we aim to predict the occupancy of charging
stations in the future (e.g., from 10 minutes to 2 hours). We
denote S the set of charging stations and T' = {1, 2,...,144}
the set of discrete time index obtained by dividing a day of
24 hours into 144 intervals of 10 minutes based on the work
done by [5].

« Day of the week (d): Charging time and duration patterns
differ with respect to the weekday. We represent the
weekday via label encoding (Sanday = 0, Monday = 1,
..., Saturday = 6).

« Time of day (¢): Charging patterns are influenced by the
time of the day. The time of the day is represented by a
number from 1 to 144, where the number corresponds to
a time interval t € T

« Charging occupation (O;): A binary flag called “charg-
ing occupation” indicates whether a charging station
s € S is in use at a specific time t € T.

To make the training phase of Federated DL models converge
faster, we first scale all the values to a range of 0 to 1. Next,
we split the entire dataset into a training set (70% of the
dataset) and a test set (30% of the dataset). The training set is
further partitioned based on the number of clients (i.e., CSOs)
participating in the federated learning training. Since we do
not have information about the charging station operators in
Dundee City, we have assumed that there are four CSOs
and have divided the station data into four randomly chosen
subsets.

B. Occupancy state prediction models

Given a sequence of historical charging occupancy
(Yt—1,Yt—2, ... ) before the time ¢t € T', we aim to predict the
charging occupancy for a station s € S in t+1,t+2,t+3,....
To accomplish this, we create charging sequences using a
sliding window over the time-series with 12 past charging
occupancy states (i.e., 2 hours) and 6 steps ahead (1 hour).

Zhttps://data.dundeecity.gov.uk/dataset/ev-charging-data



This choice was made based on experiments with various time
window sizes.

In this experiment, three DL models were implemented to
predict the occupancy of EV charging stations. These models
were designed to analyze the available data and predict the
charging stations’ usage. The models included:

o Long Short-Term Memory (LSTM)[9]: is a type of re-
current neural network (RNN) that can capture long-
term dependencies in times-series data by using gating
mechanisms to control the flow of information through
the network.

o Bidirectional LSTM (BiLSTM)[]: is a type of LSTM that
processes input sequences in both forward and backward
directions. This allows the model to capture both the past
and future context of each word, which can lead to better
predictions.

o Convolutional LSTM (ConvLSTM)[8]]: a model that in-
tegrates conventional filters into the LSTM layers. The
input sequences are passed to a 2D ConvLSTM cell and
then flattened and connected by a fully connected layer
to handle the time-series.

We use the binary cross entropy (BCE) loss function to
evaluate the performance of our model. This function is used
to measure the difference between the predicted and actual
outcomes of our model and is defined in (T):

k
BCE_TZ Jdog g + (1 = y;).log(1 — ;) (1)

Where y; is the real value at time j, and §); is the predicted
value. After manually tuning, we chose hyperparameters based
on the proposed models. Table |I| reports the retrained hyper-
parameters. To evaluate the model’s performance, we utilize

TABLE I: Hyperparameter settings of the model.

Hyperparameter Value
Activation function Tanh = Wl(f%)

Optimizer Adam
Regularization 0.2
Batch size 128
Epochs 20

Learning rate 0.001
Number of FL iterations 10

metrics such as accuracy, precision, recall, and F1-score [3].

C. Results Analysis

Within our system, there are four local CSOs, each train-
ing an LSTM model on their respective datasets. Once the
training phase concludes, each CSO sends only their model’s
learned parameters to a central server, which aggregates all the
received parameters using the Fed-Avg algorithm. We used
Fed-Avg for aggregation after conducting experiments with
different algorithms and finding that it performed the best.

Fig. 3] displays all tested models’ accuracy, precision, recall,
and fl-score using federated, centralized and local training.
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Fig. 3: EV charging stations prediction results.

The results of federated training show that LSTM performed
well with 86.21% accuracy and 91.49% Fl-score after ten
iterations for all FL clients. This is compared to BiLSTM and
ConvLSTM, which achieved 81.99% and 82.23% accuracy, re-
spectively. For comparison, we also implemented a centralized
architecture and trained the same models (LSTM, BiLSTM
and ConvLSTM). Centralized training showed that LSTM and
BiLSTM performed similarly, with LSTM achieving 95.16%
accuracy and BiLSTM achieving 94.67% accuracy. In con-
trast, LSTM performed better than ConvLSTM, which had an
accuracy of 87.33%.

The results obtained by training the models locally by each
CSO indicate that some local models have low accuracy. This
is due to the fact that clients (or CSOs) perform local training



on their smaller subset of data. In contrast, when we combine
these local models using FL, the global model performs well.
The confusion matrices when predicting 6 time steps are
shown in Fig. f]
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Fig. 4: Confusion matrices on the test dataset for multiple time
steps ahead.

These experimental results show that the performance of
the proposed Federated LSTM is comparable to centralized
LSTM. Even though centralized LSTM outperforms Federated
LSTM in terms of accuracy and fl-score, the centralized ap-
proach leads to privacy concerns as CSOs need to upload their
data to a central server. Furthermore, our FL framework allows
for a reduction in data transfer because only 576 kilobytes of
data need to be transferred (the size of parameters), compared
to the 194 megabytes of data that would need to be transferred
to a central server in a traditional centralized approach.

V. CONCLUSION

In this paper, we addressed the problem of EV charging
stations occupancy prediction. Specifically, by regarding each
CSO as an FL client, we developed a Federated Deep Learning
framework that allows CSOs to collaborate in training a deep
neural network without sharing their data; they exchange only
model parameters with a central server that belongs to a
local authority in a given city. It aggregates the gradient
uploaded by all locally trained models by CSOs using the
Fed-Avg algorithm and constructs a global model to predict
the availability of charging stations.

FL has already proven its worth in most fields, allowing
devices or organizations to collaborate without revealing their

own individual data. In doing so, we reduce data communi-
cation costs and allow CSOs with limited or small datasets
to benefit from models trained by other CSOs. We evaluate
the performance of the proposed framework on a real-world
dataset collected from Dundee City and compare results with
a centralized approach which compromises data privacy while
forecasting charging occupancy. Results show that the perfor-
mance of our FL framework is comparable to a centralized
approach. We plan to extend this framework for a public
EV charging stations recommendation system or real-time EV
charging scheduling for future work.
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