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Co-identification procedure of equivalent circuit model of batteries from
short-term experiments

Dino Hrvanovic · Ignacio Peñarrocha-Alós · Emilio Pérez · Carlos Dı́az-Sanahuja ·
Günter Prochart

Abstract In this paper we propose a co-identification itera-
tive procedure aimed at estimating static and dynamic com-
ponents within an equivalent circuit model for batteries, ex-
ploiting a limited amount of data with the aim to shorten
the experiments needed to acquire data for identification.
The proposed algorithm estimates iteratively the model pa-
rameters by segregating the measured terminal voltage into
static Open Circuit Voltage (OCV) and dynamic (voltage
drop across Rs and Cs) voltage terms. In each iteration, first
the OCV-SOC curve model is identified using a virtual OCV
measurement derived from the voltage and a previously es-
timated dynamic voltage. Secondly, the dynamic behavior
model is identified using a virtual dynamic voltage measure-
ment derived from the voltage and the recently estimated
OCV. This iterative identification process allows to obtain
models for both static and dynamic components. The pa-
per validates the effectiveness of this approach in precisely
identifying equivalent circuit parameters from limited exper-
imental data.

1 Introduction

Rechargeable Energy Storage Systems (ESS) are considered
a clean energy source for most autonomous applications,
from low-energy, low-power portable devices to high-energy,
high-power applications such as smart-grid and Electric Ve-
hicles (EVs). A high demand in grid renewable ESS and EVs
makes the Lithium-Ion Batteries (LIBs) presently one of the
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most accepted ESS on the market. This is due to the fact that,
when compared with other choices of rechargeable batteries
[1]- [2], LIBs have several advantages: high energy density,
high power density, wide voltage range, long cycle life and
environmental friendliness [3]. Furthermore, when referring
to LIBs, there is a wide variety of chemistries and packag-
ing formats (each with different characteristics), although
the fundamental working principles of these LIBs remain
the same [4].

Due to requirements in automotive industries such as
long range, fast acceleration and efficiency, LIBs in EVs are
targeting high capacity and a large serial-parallel numbers
of cells. This may lead to problems such as safety, dura-
bility, uniformity and cost [3]. To tackle these challenges
in real applications, LIBs need to operate within their safe
and reliable operating area, what needs the use of a Bat-
tery Management System (BMS). Some of the main BMS
functions to keep the cells in safe operation and actuate in
case of abuse or malfunctioning are: cell parameters authen-
tication and monitoring, cell balancing, protection and cell
state estimation [5]-[6]. In particular, it is highly critic to es-
timate, among other parameters regarding cells’ status, state
of charge (SOC) of the battery. Among the most extended
techniques to estimate SOC, because of their simplicity, are
the Coulomb counting (also known as ampere-hour count-
ing or current integration) and estimation by measuring the
open circuit voltage (OCV). However, the former is an open
loop estimator very sensitive to different error sources [7]
and the latter generally requires a very long rest time, which
makes it unpractical to use in real-time applications [8].

In this situation, state observer based estimators and, in
particular, Kalman filter based approaches, have been widely
proposed in the literature [8–10]. For their adequate func-
tioning, KF-based algorithms require a proper battery model
which, very often, is in the form of an equivalent circuit
model (ECM) [11]. This concludes that battery modelling
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is a key part of the estimation design process [12]. However,
obtaining these models, and especially the SOC-OCV curve,
is very time-demanding and requires dedicated equipment
[13]. Furthermore, the model defining parameters change
with battery aging [14], what would require periodically re-
peating dedicated experiments for actualizing them for an
optimal behaviour of the BMS algorithms.

In this work, we consider the problem of developing
a co-identification procedure that is executed offline after
gathering short data. The algorithm iteratively estimates the
static SOC-OCV curve and the passive ECM elements. This
algorithm is capable of obtaining this model with a limited
amount of data coming from an experiment of short dura-
tion, thus facilitating the inclusion of these experiments in
the BMS workflow.

2 Problem statement

The correlation between OCV and SOC is crucial in the ini-
tial stages of modelling any battery and is dependant on the
battery chemistry [15]-[16]. To experimentally establish the
OCV-SOC relationship, extensive and time-consuming ex-
periments to acquire measurements must be undertaken each
time a new cell chemistry requires modelling. Two widely
recognized methods in literature are commonly employed to
establish the correlation among OCV, SOC and the available
cell capacity:

– Open-Circuit voltage Technique [17]
– Galvanostatic Intermittent Titration Technique (GITT)[18]

As it can be seen from [17]-[18], conducting these experi-
ments is time-consuming. Besides time, in order to conduct
it correctly, special laboratory equipment such as tempera-
ture chambers and cell testers are needed.

This study focuses on the challenge of constructing a
battery model based on short-term experimental data. The
model aims to precisely represent both mid-term behaviour,
which encompasses voltage fluctuations due to SOC, and
short-term transients arising from dynamic behaviour.

In this work, we consider an equivalent circuit model
(ECM) with a series resistance and two RC branches (2RC)
as the one shown in Fig. 1. This kind of model is extensively
used for modeling of the voltage response of the battery as it
offers a good compromise between simplicity and accuracy
[11].
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R2

C2

I

VVoc = f(SOC)
Vc1 Vc2

Fig. 1 Equivalent electrical circuit.

In Fig. 1, I(t) is the battery current; V (t) is the terminal
voltage; Voc is the OCV, which depends on SOC; R0 is the

series resistance; and the RC branches are used to model the
time constants τ1 = R1C1 and τ2 = R2C2 that describe the
slow and fast transient response caused by charge transfer
and diffusion within the LIBs [9].

By applying elemental circuit principles, the behavior of
the LIB is modelled by the following differential equations:

SOC(t) = SOC(0)+
1

Cbat

∫ t

0
I(t)dt (1a)

VR0(t) = R0 I(t) (1b)

V̇c,i(t) =
−1
τi

Vc,i(t)+
Ri

τi
I(t), i ∈ {1,2} (1c)

V (t) = fOC(SOC(t))︸ ︷︷ ︸
VOC(t)

+VR0(t)+Vc1(t)+Vc2(t)︸ ︷︷ ︸
VDY N(t)

(1d)

where Cbat is the LIB capacity; and Vc1(t) and Vc2(t) are
the voltages in both capacitors. The static part of the output
voltage. VOC can be expressed as

VOC = fOC(SOC), (2)

and the dynamic part of the output voltage can be rewritten
as an implicit differential equation as

fDY N(VDY N(t), I(t)) = 0, (3)

For the identification procedure, Cbat and all the passive ECM
elements are considered constant in time and independent
from SOC and temperature, furthermore, the charging and
discharging efficiency has been considered unitary.

In the sequel, we show our identification proposal to
make use of limited data to obtain at the same time the static
equation (2) and the differential equation (3).

3 Proposed approach

The identification procedure proposal that we present in this
work is based on the following assumptions w.r.t. the battery
behaviour for the acquired data.

A0: We have experimental data that have voltage and cur-
rent measurements as well as state-of-charge computations.
The experiments cover almost the full SOC range.

A1: The measurable voltage V (t) is the addition of open cir-
cuit voltage (VOC(t)) plus the voltage drop in the RC branch
VDY N(t), i.e.,

V (t) =VOC(t)+VDY N(t) (4)

A2: The voltage level of VOC(t) is one or more orders of
magnitude higher than VDY N(t).

With these assumptions we can state the following ones
that are the basis of our proposed iterative identification pro-
cedure

A3: If we have an initial guess of time values VDY N(t) called
V̂DY N(t), we can use V (t)− V̂DY N(t) as our measurement
of VOC(t), i.e., V m

OC(t) = V (t)− V̂DY N(t) 1. With that vir-

1 superscript m refers to virtual measurement
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tual measurement V m
OC(t) and the available data SOC(t) we

can infer an estimation of the static curve OCV −SOC, i.e.,
the function fOC(·) in VOC = f (SOC) by fitting f (SOC) to
V m

OC(t). The open circuit voltage that can be explained with
that estimated function and the available data SOC(t) is called
then V̂OC = f̂OC(SOC).

A4: If we have an initial guess of VOC(t) called V̂OC(t),
we can use V (t)− V̂OC(t) as our measurement of VDY N , i.e.,
V m

DY N(t) = V (t)− V̂OC(t). With that V m
DY N(t) and the avail-

able data I(t) we can infer an estimation of the parameters
of the differential equation (3), i.e., the function fDY N(·) by
using V m

DY N(t). With the identified function f̂DY N(·) and the
available data I(t) we can then obtain the dynamic voltage
that can be explained with that function by solving numeri-
cally the differential equation f̂DY N(V̂DY N(t), I(t)) = 0.

From the above stated assumptions and hypothesis, we
present now the overall procedure to obtain the model of the
battery. The steps (S) can be summarized as follows:

S0: Obtain the experimental data set.
S1: Define the parameters to be estimated.
S2: Initialization.
S3: Obtain the parameters for the static curve (2).
S4: Obtain the parameters for the dynamic behaviour (3).
S5: Iterate over S3 and S4 until convergence.

Now we detail each of the steps:

S0: Set a sampling period T . Acquire a periodically sam-
pled set of data V (t), I(t) and SOC(t) fulfilling the require-
ments expressed in A0, leading to data sets

{V}= {V0,V1, . . . ,VN}, {I}= {I0, I1, . . . , IN}

{SOC}= {SOC0,SOC1, . . . ,SOCN}
where xk (k = 0, . . . ,N) represents the sample xk = x(k T ).
The next steps are all executed offline:

S1: Define a mathematical function to describe the curve (2)
with some given parameters as

VOC = fOC(θOC,SOC) (5)

where θOC refers to the parameters that define the curve and
must be identified. Discretize differential equation (3) to ob-
tain an explicit difference equation

VDY N,k = fDY N(θDY N ,VDY N,k− , Ik−) (6)

where θDY N refers to the parameters that define the differ-
ence equation and must be identified, and VDY N,k− , Ik− refers
to [VDY N,k−1,VDY N,k−2] and [Ik, Ik−1, Ik−2], respectively.

S2: Set iteration counter i = 1. Set ε an small constant.
Under assumption A2 set initially an estimated sequence2

2 {x}i = {x0,x1, . . . ,xN}i refers to a sequence used in the i-th itera-
tion. When referring to a given element k in the sequence (k = 0, . . . ,N)
during that iteration i, we use notation xk,i

of dynamical voltages at each sampling period as

{V̂DY N}i−1 = {0, . . . ,0}.

S3: Obtain the virtual measurements of {VOC} as

{V m
OC}i = {V}−{V̂DY N}i−1.

Obtain θ̂OC,i, the current estimate of parameters θOC in (5)
by minimizing some metric of the error

{eOC}i = {V m
OC}i − fOC(θ̂OC,i,{SOC})

Obtain the estimation of values {VOC} with the current avail-
able parameters as

{V̂OC}i = fOC(θ̂OC,i,{SOC}) (7)

S4: Obtain the virtual measurements of {VDY N} as

{V m
DY N}i = {V}−{V̂OC}i.

Obtain θ̂DY N,i, the current estimate of parameters θDY N in (6)
by minimizing some metric of the error

{eDY N}i = {V m
DY N}i − fDY N(θ̂DY N,i,{V m

DY N}i,{I})

Obtain the estimation of values {VDY N} with the current avail-
able parameters, called {V̂DY N}i, where each element is de-
noted as V̂DY N,k,i, by using the difference equation from k =
2 to k = N as

V̂DY N,k,i = fDY N(θ̂DY N,i,V̂DY N,k−,i, Ik−) (8)

S5: Estimate the output voltage sequence as {V̂}i = {V̂OC}i+

{V̂DY N}i and obtain a given metric of the estimation error
sequence {Ṽ}i = {V}−{V̂}i. If the error metric is low stop
and compute the electrical parameters in (1) from θ̂DY N,i.
Else set i = i+1, and go to step 3.

3.1 Acquiring the data for identification (S0)

A measurement test to obtain the data that covers almost the
full range of cell SOC is described by the following steps
(see as an example Figure 2):

S0a: The cell is preconditioned 3 at 25◦C for 3 hours, and
charged using Constant Current (CC) and Constant Voltage
(CV) charging steps until voltage reaches U =Umax.

S0b: Then a CC discharge is deployed with I = C/2 until
the voltage reaches U =Umin.4

S0c: Next a CV discharge step is deployed until I <=C/20.

3 The preconditioning step is not part of the measurement test.
4 Cells are cycled in an 80% depth of discharge (dSoC) range

(4.085-3.534 V). Hence the measured capacity (including CV at both
limits) is assumed to be 80% of the cell’s capacity. Through linear
extrapolation the 100% dSoC capacity is calculated by dividing the
logged capacity by 0.8 in the formula section. All further C-rates in the
test measurement are based on the actual cell capacity test.
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S0d: Subsequently, a CC charging step is deployed with
I =C/2 until U <=Umax.

S0e: Next, a CV charging step is executed until I <=C/20.

S0f: After the last CV charging step, a rest time of 10 min-
utes is deployed, and experiment steps S0b to S0e are re-
peated to cover twice the SOC range.

During the experiment, current, voltage, and time are
recorded. With these data we compute SOC by Coulomb
counting using (1a). This calculation is considered reliable
because: (i) we have a good estimation of the initial SOC
(SOC(0)) thanks to step S0a; (ii) the accumulated error due
to measurement noise, decalibration of current sensor or res-
olution in digital acquisition is negligible thanks to the lim-
ited time span of the experiment.

3.2 Defining the models to identify (S1)

In this section we define the parameters included in (5) and (6)
to approximate (2) and (3) using, respectively, fuzzy approx-
imates and discretization of differential equations.

S1a: First, we propose to approximate curve (2) by general
approximators by means of a fuzzy function of the form

VOC =
nm

∑
j=0

c jµ j(SOC) =
[
µ1(SOC) · · · µnm(SOC)

] c1
...

cnm


︸ ︷︷ ︸

θOC

(9)

where θOC is the vector of parameters needed in (5), and
where µ j(·) ( j = 1, . . . ,nm) represent triangular membership
functions fulfilling 0 ≤ µ j(SOC) ≤ 1 and ∑

nm
j=1 µ j(SOC) =

1. Each µ j(·) is defined by the piecewise function

µ j(SOC) =


0, SOC ≤ t j−1
1
∆
(SOC− t j−1), t j−1 ≤ SOC ≤ t j

1
∆
(t j+1 −SOC), t j ≤ SOC ≤ t j+1

0, SOC ≥ t j+1

(10)

where t j ( j =−1, . . . ,nm +1) is the set of ordered values

t j = j ·∆ , ∆ =
1

nm
(11)

being t j the vertex position of each triangle, and 2∆ the
width of each triangle. The number of triangular sets nm is a
tuning parameter that must be chosen as a compromise be-
tween the achievable OCV − SOC curve accuracy and data
availability. The parameters to be identified (θOC) refers then
to the weight of each membership value in the curve.
S1b: Under assumption of constant current I(t) between
samples, the differential equation (3) can be discretized us-
ing the zero-order-hold equivalent leading to difference equa-
tion

VDY N,k =a1VDY N,k−1+a2VDY N,k−2+b0Ik+b1Ik−1+b2Ik−2 (12)

being

a1 = α1 +α2, a2 =−α1 α2, b0 = R0 (13a)

b1=β1+β2−α1R0−α2R0, b2=α1α2R0−α2β1−α1β2 (13b)

α1 = e
−Ts
τ1 , α2 = e

−Ts
τ2 , β1 = R1 (1− e

−Ts
τ1 ), β2 = R2 (1− e

−Ts
τ2 ) (13c)

With this, the difference equation (12) can be rewritten in
regression form as

VDY N,k =
[
VDY N,k−1 VDY N,k−2 Ik Ik−1 Ik−2

]︸ ︷︷ ︸
φ(k)


a1
a2
b0
b1
b2


︸ ︷︷ ︸
θDY N

(14)

where θDY N is the vector of parameters needed in (6).

3.3 Parameter identification (S3, S4)

Once we have defined the static and dynamic functions with
linear dependence w.r.t. vectors of parameters θOC and θDY N ,
we propose to obtain these vectors by means of least squares
(LS) problems, which we detail mathematically in the fol-
lowing. First of all, let us define the membership values as:

µ j,k = µ j(SOCk), j = 0, . . . ,nm, k = 0, . . . ,N

Once this is obtained, we can execute steps S3 and S4 with
the following detailed operations.

S3a: Obtain virtual measurements:

V m
OC,k,i =Vk −V̂DY N,k,i−1, k = 0, . . . ,N.

S3b: Construct regression and output matrices

XOC =

µ1,0 · · · µnm,0
...

µ1,N · · · µnm,N

 , YOC =

V m
OC,0,i

...
V m

OC,N,i


S3c: Compute the current parameter estimation:

θ̂OC,i = (XT
OCXOC)

−1XT
OCYOC

S3d: Compute the current estimation of VOC as5

V̂OC,k,i =
[
µ1,k · · · µnm,k

]
θ̂OC,i, k = 0, . . . ,N.

S4a: Obtain virtual measurements:

V m
DY N,k,i =Vk −V̂OC,k,i, k = 0, . . . ,N.

5 Can also be obtained through {V̂OC}i = XOCθ̂OC,i.
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S4b: Construct regression and output matrices

XDY N =

 V m
DY N,1,i V m

DY N,0,i I2 I1 I0
...

V m
DY N,N−1,i V m

DY N,N−2,i IN IN−1 IN−2

 ,YDY N =

V m
DY N,2,i

...
V m

DY N,N,i


S4c: Compute the current parameter estimation:

θ̂DY N,i = (XT
DY NXDY N)

−1XT
DY NYDY N

S4d: Compute the current explainable VDY N values along
time through the model, by executing the difference equa-
tion in open loop, i.e., for k = 2, . . . ,N compute

V̂DY N,k,i =
[
V̂DY N,k−1,i V̂DY N,k−2,i Ik Ik−1 Ik−2

]
θ̂DY N,i,

with V̂DY N,0,i =V m
DY N,0,i, V̂DY N,1,i =V m

DY N,1,i.
Once the discrete dynamical model is obtained, we can

recover the electrical parameters Ri (i = 0,1,2) and Ci (i =
1,2) by inverting (13).

4 Experimental results

In this paper, measurements shown in Figure 2 were used
to test the proposed approach. The experiments were con-
ducted under laboratory conditions using ARBIN BT2000 -
Battery Test Equipment and Memmert ICP thermal chamber.
In the figure, the SOC obtained by Coulomb counting is also
shown. Figure 3 shows the virtual measurements and the es-
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Fig. 2 Acquired experimental data for identification.

timation with the model obtained at iterations i = 1 to i = 5.
In the top row we can see the OCV-SOC curve evolution,
where we have also included the available OCV-SOC curve
(called VOC) from an standard long-time procedure. We see
how the static curve is well fitted in just few iterations. In the
bottom row, we show for the dynamical voltage, both the vir-
tual measurement, and its estimation through the difference
equation. We can also see how the virtual measurements
tend progressively to follow the expected behaviour of the
proposed linear model. This allows our algorithm to fit bet-
ter the dynamic behaviour at each iteration. For each identi-
fication iteration i we have obtained the explainable voltage

V at each sampling k (k = 1, . . . ,N) through the model and
the estimation error as

V̂k,i = V̂OC,k,i +V̂DY N,k,i Ṽk,i =Vk −V̂k,i (15)

For this Ṽ error we have obtained the following metrics

MAXi =maxk |Ṽk,i|, MAEi =
1
N ∑k |Ṽk,i|, RMSi =

√
1
N ∑k Ṽ 2

k,i,

MEi =
1
N ∑k Ṽk,i that refer to the maximum absolute error,

the mean absolute error, the root mean square error, and the
mean error. Figure 4 shows these metrics in mV at the end
of each identification iteration. The mean error shows that
the approach performs a bias free voltage estimation. Fur-
thermore, we see that the algorithm only needs 10 iterations
to converge, being the metrics at the end of the identifica-
tion MAX = 12.9 mV, MAE = 2.2 mV, RMS = 3 mV and
ME = 0 mV. Finally, Figure 5 shows the measured voltage,
its estimation through the full model with the final identified
parameters and the error (on the right plot, in mV). Results
show a proper fitting, but also a somewhat deterministic dy-
namical behaviour, advising that some higher order model
could be used.

5 Conclusions

In this work we have presented a co-identification procedure
for estimating offline the parameters that define an equiva-
lent circuit model for batteries. The iterative nature of the al-
gorithm has allowed us to obtain a simultaneous refinement
of both the static OCV-SOC model and the dynamic RC cir-
cuit model, making effective use of minimal experimental
data. The proposed identification method makes use of vir-
tual measurements of OCV and voltage drop at RC branches
to improve model accuracy. The experimental results show
the efficacy of the approach to capture the interplay between
static and dynamic components, making it potentially useful
for practical applications. Further research work will deal
with sequentially identify different RC branches to improve
the modelling of the dynamic behaviour; considering depen-
dency of Rs and Cs with respect to SOC and temperature;
and how to extend this approach to capture aging processes
by recursive least squares algorithms.
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0 1 2 3

3.6

3.8

4

Time [h]
0 1 2 3

−10

0

10

Time [h]

Fig. 5 Voltage estimation [V] and error [mv]

2. David Linden and Thomas Reddy. Handbook of batteries. Hand-
book Series. McGraw-Hill Professional, New York, NY, 3 edition,
November 2001.

3. Languang Lu, Xuebing Han, Jianqiu Li, Jianfeng Hua, and Ming-
gao Ouyang. A review on the key issues for lithium-ion bat-
tery management in electric vehicles. Journal of Power Sources,
226:272–288, March 2013.

4. Yu Miao, Patrick Hynan, Annette Von Jouanne, and Alexandre
Yokochi. Current li-ion battery technologies in electric vehicles
and opportunities for advancements. Energies, 12(6):1074, 2019.

5. K. W. E. Cheng, B. P. Divakar, Hongjie Wu, Kai Ding, and Ho Fai
Ho. Battery-management system (bms) and soc development for
electrical vehicles. IEEE Transactions on Vehicular Technology,
60(1):76–88, January 2011.

6. Seong Beom Lee, Raghav S. Thiagarajan, Venkat R. Subrama-
nian, and Simona Onori. Advanced battery management systems:
Modeling and numerical simulation for control. In 2022 American
Control Conference (ACC). IEEE, June 2022.

7. Kiarash Movassagh, Arif Raihan, Balakumar Balasingam, and Kr-
ishna Pattipati. A critical look at coulomb counting approach for
state of charge estimation in batteries. Energies, 14(14):4074,
2021.

8. Jun Xu, Chunting Chris Mi, Binggang Cao, Junjun Deng, Zheng
Chen, and Siqi Li. The state of charge estimation of lithium-ion
batteries based on a proportional-integral observer. IEEE Trans-
actions on Vehicular Technology, 63(4):1614–1621, 2013.

9. Ping Shen, Minggao Ouyang, Languang Lu, Jianqiu Li, and Xun-
ing Feng. The co-estimation of state of charge, state of health,
and state of function for lithium-ion batteries in electric vehicles.
IEEE Transactions on vehicular technology, 67(1):92–103, 2017.
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