
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 1

LoRa meets IP: a Container-based Architecture
to Virtualize LoRaWAN End Nodes

Antonio Cilfone, Luca Davoli, Member, IEEE, and Gianluigi Ferrari, Senior Member, IEEE

Abstract—In this work, a container-based architecture for the integration of Long Range Wide Area Network (LoRaWAN) end
nodes—e.g., used to monitor industrial machines or mobile entities in specific environments—with Internet Protocol (IP)-based
networks is proposed and its performance is investigated. To this end, we exploit the native service and resource discovery support
of the Constrained Application Protocol (CoAP), as well as its light traffic requirements, owing to its use of User Datagram Protocol
(UDP) rather than Transmission Control Protocol (TCP). This approach (i) adapts transparently (with no impact) to both private and
public LoRaWAN networks, (ii) enables seamless interaction between LoRaWAN-based and CoAP-based nodes, through a logical
“virtualization” of LoRaWAN nodes at server side, and (iii) enables routing among LoRaWAN end nodes, overcoming LoRaWAN’s
absence of inter-node communication and lack of compliance (at the end nodes side) with IP. Two virtualization approaches are
proposed: (i) virtualization of a single end node (represented as a CoAP server) per container and (ii) virtualization of multiple end
nodes (as CoAP servers) per container. Finally, deployments of the proposed virtualization architectures, using both a laptop and an
Internet of Things (IoT) device (e.g., a Raspberry Pi), are considered, highlighting how the best solution relies on the use of several
containers, with more than one CoAP server per container.

Index Terms—Internet of Things, LoRaWAN, Virtualization, CoAP.

✦

1 Introduction

The Internet of Things (IoT) applies to heterogeneous
ecosystems where a massive number of (typically)

constrained devices is deployed and connected in order
to cooperate for multiple purposes, such as data collection
and actuation, in both Human-to-Machine (H2M)-oriented
and Machine-to-Machine (M2M)-oriented ways. In this
context, one of the main challenges is the seamless inter-
action between heterogeneous networks (e.g., in terms of
transmission range capabilities [1] and especially target-
ing interactions at higher layers, rather than at physical
layer) to improve plants’ safety and operation.

Among IoT network technologies, Low-Power Wide
Area Networks (LPWANs) are attracting a significant in-
terest, having the advantage to meet almost all IoT re-
quirements, such as: (i) easy and inexpensive deployment
(i.e., unlike solutions based on cellular 4G/LTE communi-
cations, which incur costs related to SIM renting and traf-
fic data plans), (ii) wide coverage, (iii) simple and scalable
architecture, and (iv) low-power consumption. This comes
at the cost of a few limitations such as: (i) limited data rate
and (ii) restrictions on uplink and downlink capabilities.
To this end, one of the most attractive LPWANs is Long
Range WAN (LoRaWAN) [2], operating in the unlicensed
Industrial, Scientific and Medical (ISM) bands [3] and
emerging as a key enabler for typical (and heterogeneous)
IoT contexts (e.g., smart city, smart farming, and Indus-

• A. Cilfone is with Tesmec Automation s.r.l., Italy. He was with the
IoT Lab of the University of Parma when contributing to this work.
E-mail: antonio.cilfone@tesmec.com

• L. Davoli and G. Ferrari are with the Internet of Things (IoT)
Lab, Department of Engineering and Architecture, University of
Parma, Italy.
E-mail: luca.davoli@unipr.it, gianluigi.ferrari@unipr.it

Manuscript received August X, 2023; revised October Y, 2023.

trial IoT, IIoT) [4], with its appeal confirmed by extensive
performance analysis [5]. As an example, future opera-
tional services offered by an integrated data collection
from manufacturing machines and mobile vehicles will
benefit from the possibility to expand their communication
range [6,7].

An attractive approach to the design of LPWAN-based
systems would be to leave the architecture of LPWANs un-
modified (considering them as backbone networks), thus
adopting self-organizing mechanisms enabling heteroge-
neous networks to interact with each other, in a trans-
parent way from the point of view of the end nodes. This
should be guaranteed even taking into account constraints
on power consumption and (sometimes) post-deployment
critical maintenance due to environmental limitations. In
this context, devices’ logical virtualization will likely play
a key role in enabling the desired trade-off between
network flexibility and performance (e.g., especially in
the case LPWANs will not be natively IP-compliant and,
thus, with nodes not natively addressable in a “standard”
way). However, despite many implementations, LoRaWAN-
based solutions are often considered as standalone, with
very limited integrability with other protocols.

In this work, a novel networking architecture, based
on the Constrained Application Protocol (CoAP) [8] and
enabling the interaction between (non-IP-compliant) Lo-
RaWAN end nodes and non-LoRaWAN IP-compliant nodes,
is proposed and its performance is evaluated. More in
detail, through one or multiple containers, LoRaWAN
end nodes are virtualized [9]—they are represented with
corresponding digital replicas, following a “digital twin”
approach [10]—both on-premise (e.g., at the edge), as well
as in the cloud. In this way, our solution enables a seamless
interaction between LoRaWAN end nodes and external

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 2

IP-compliant devices, without any impact on the existing
LoRaWAN stack and on power requirements of the end
nodes, which would still be unaware of this additional
virtualization layer and would not be affected in their
internal implementation.

The remainder of this work is organized as follows. In
Section 2, a short introduction on LoRaWAN, Cayenne Low
Power Payload (CLPP), and alternative data representa-
tion formats, is provided. In Section 3, we comment on
research works available in the literature. In Section 4,
the proposed architecture, where a container may allow
the virtualization of one or more servers corresponding
to LoRaWAN end nodes, is described. In Section 5, the
system performance is investigated. Finally, in Section 6
conclusions are drawn.

2 Overview on LoRaWAN and Data Repre-
sentation

LPWANs are designed to offer affordable connectivity to
a large number of constrained devices distributed over
large areas (e.g., different plants of the same production
site). To this end, various LPWAN technologies are avail-
able, such as (just to name a few) Narrowband IoT (NB-
IoT) [11,12], Sigfox [13], and LoRa [14]. LoRa refers only
to the physical (PHY) layer in the LPWAN stack and does
not provide sufficient reliability mechanisms to be used
as-is in IoT contexts. In fact, as LoRaWAN operates in
licence-free frequency bands (as further detailed in Sub-
section 2.1), coexistence challenges with other well-known
radio standards (e.g., Zigbee, Bluetooth, etc.) in these
frequency bands might emerge, leading to interference
problems [15,16]. More in detail, a “background noise”
may appear, due to the presence of devices exchanging
data in parallel via heterogeneous radio communication
protocols, as well as vehicles emitting electromagnetic
waves through their electronic boards (e.g., in urban and
sub-urban contexts). Finally, it is not possible to com-
pletely neglect environmental interference even caused
by LoRa devices interfering with each other, because
of simultaneous retransmissions (owing to the Aloha-like
transmission behaviour of this protocol). With regard to
the Sigfox protocol, in 2022 Sigfox (as a company) went
into bankruptcy proceedings, so its adoption is not attrac-
tive. Finally, NB-IoT requires a cellular network coverage,
which is not always available (depending on both location
and environmental conditions), and bears costs due to the
SIM card to be included in the IoT/IIoT devices.

Hence, among the available LPWAN protocols, one
of the most interesting (as anticipated in Section 1) is
LoRaWAN. More precisely, LoRaWAN has been defined
by the LoRa Alliance [17], relies on LoRa modulation
(based on Chirp Spread Spectrum, CSS, patented by
Semtech Corporation [18]), and specifies the channel ac-
cess method and the network architecture to be exploited
in operational scenarios.

End nodes

GW

GW

Network Server
(+ Application Server)

Applications

LoRa Wi-Fi / Cellular / Ethernet

Fig. 1: General LoRaWAN architecture providing IoT-
oriented information to external applications.

2.1 Basics of LoRaWAN

From an architectural point of view, as shown in Fig. 1, a
“pure” LoRaWAN architecture (either private or public) is
composed by (on-field) end nodes, intermediate gateways
(GWs), and a Network Server (NS, often combined with an
Application Server, AS) managing the overall LPWAN. In
detail, the link between an end node and a GW is based on
the PHY-layer LoRa protocol, while GWs are connected to
the NS through the IP protocol. Focusing on on-field Lo-
RaWAN end nodes, depending on their downlink capabil-
ity, they can belong to one operational class among Class A,
Class B, and Class C [2]. In detail, in Class A, which must
be supported by all LoRaWAN devices, a node can receive
downlink packets only inside two receive slots, following
an uplink transmission act, thus resulting in the lowest
energy consumption mode. Class B devices are allowed to
open extra receive slots at scheduled intervals (regardless
of uplink transmissions), identified by the reception of
synchronization beacons from the GWs—therefore, they
support applications requiring a more intense downlink
traffic. Finally, Class C devices are always listening to the
channel, thus presenting the highest energy consumption
level among these operating classes, but, at the same
time, being able to receive a downlink packet at any
time, leading to the lowest downlink latency. The channel
access mechanism is based on Aloha: once an end node
wakes up, it sends a packet on a selected radio channel.
At this point, one or more GWs (within the end node’s
transmission range) (i) receive the packet and (ii) forward
it to the NS, which keeps only one instance of the received
(potentially multiple times) packet. Since operations are
carried out in unlicensed bands (in Europe, the Euro-
pean Telecommunications Standards Institute, ETSI [19]-
defined 868 MHz band), end nodes and GWs must oper-
ate with a proper duty cycle (in Europe, between 0.1%
and 10%, depending on the adopted frequency), unless
end nodes perform Listen-Before-Talk (LBT) or frequency-
hopping techniques. Hence, each time a frame is trans-
mitted, the airtime is calculated and, subsequently, the
time interval during which the transmitter cannot use the
channel, denoted as time off (TOFF), is derived.

Moreover, LoRaWAN end nodes are required to “join”
the LoRaWAN network to participate to network op-
erations. In detail, the join operation can be carried
out through two activation methods: (i) Over-The-Air-
Activation (OTAA) and (ii) Activation-By-Personalization

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 3

(ABP), with OTAA being the most secure method, as ses-
sion parameters change at each session establishment.
Thus, owing to this feature, OTAA is the join mechanism
which will be considered in this work, being recommended
by the LoRa Alliance because of its high security level, that
perfectly fits scenarios where communication security is
crucial. With ABP, end nodes already know all the con-
figuration parameters required for activation. With OTAA,
the LoRaWAN specifications [2] define the use of (i) static
root keys (only provisioned in OTAA end devices) and (ii)
session keys dynamically generated from the root keys and
derived when an OTAA device executes a join procedure
to the LoRaWAN network. Hence, once installed on the
field, an OTAA-activated end device will protect its over-
the-air traffic by using the session keys. At the opposite,
end devices using the ABP activation procedure will not
be provisioned with root keys, but they will feature only a
set of session keys for a pre-defined network, with session
keys remaining unmodified throughout the lifetime of the
ABP end device itself.

2.2 Cayenne LPP (CLPP)

One of the main constraints of LoRaWAN (and, in general,
of all LPWANs) is the available payload space inside a net-
work packet: with reference to EU regulation, the smallest
available payload is equal to 59 bytes. Nevertheless, the
parameter of interest (in order to send as much informa-
tion as possible) is the maximum payload size, which, in
the case of LoRaWAN, depends on the chosen Spreading
Factor (SF). In several scenarios, the focus would be on the
possibility to shorten the payload to be sent through such a
constrained protocol, but, at the same time, guaranteeing
to transmit all the required information (e.g., through mul-
tiple packets), by devising a mechanism to “auto-describe”
the data without the need to a-priori define a rigid packet
format (e.g., avoiding the need to reserve a fixed space in
the packet for each information). In order to meet these
goals, one of the widely adopted formats is the Cayenne
Low Power Payload (CLPP) [20], which can be “squeezed”
to 11 bytes (thus fitting the available payload size given
by any LoRaWAN SF), avoiding useless separators, and
allows an end node to send multiple sensors’ data at once
by splitting the information across consecutive frames.

More in detail, each CLPP-formatted data packet has a
prefix given by the following 2 bytes:

• data channel byte, used to identify the node’s sen-
sors across multiple frames (in the presence of
multiple sensors of the same type);

• data type byte, used to identify the nature of the
sensor inside the frame, as regulated by the In-
ternet Protocol for Smart Objects (IPSO) guide-
lines [21].

As a clarification example, Table 1 summarizes the
identifiers and data resolution (per bit) related to the
sensors that will be assumed as reference on-field data
collectors in this work. In Fig. 2, we show an illustrative
CLPP frame sent by a LoRaWAN end node (e.g., located

TABLE 1: LPP sensor codes.

Sensor
HEX

Value
Length
[bytes]

Data Resolution
(per bit)

Analog input 0x02 2 0.01 Signed
Temperature 0x67 2 0.1 ◦C Signed MSB
Humidity 0x68 1 0.5% Unsigned
Accelerometer 0x71 6 0.001G Signed MSB per axis
Barometer 0x73 2 0.1hPa Unsigned MSB
Noise sensor 0xE9 2 0.1dB Unsigned MSB
Filling level 0xEB 2 0.01% Unsigned
Air quality 0xE4 2 1 µg/m3 Unsigned MSB

Location
Lat: 0.0001° Signed MSB

0x88 9 Lng: 0.0001° Signed MSB
Alt: 0.01m Signed MSB

00 73 26FA | 01 67 010A | 02 68 6F

Data channel Data type Actual Data

/pressure /temperature /humidity

Fig. 2: Example of received CLPP-encoded uplink packet,
with corresponding CoAP resources (as detailed in Sec-
tion 4).

in a drying cell in a production plant) with three on-board
sensors (pressure, temperature, and humidity) measuring
997.8hPa, 26.6 ◦C, and 55.5%, respectively. For each type
of sensor a byte sequence is sent: data channel (one byte),
data type (one bye), and “raw” sensor data (at least one
byte). In this case, the CLPP-encoded payload is equal to
007326FA0167010A02686F, where:

• 0x00, 0x01, and 0x02 are the indexes of the sensors;
• 0x73 identifies a pressure sensor (barometer);
• 0x26FA is the pressure value that, once converted to

decimal (i.e., 9978), has to be multiplied by 0.1hPa
(according to the rules shown in Table 1), leading
to a final value equal to 997.8hPa;

• 0x67 identifies a temperature sensor;
• 0x010A is the (2-byte) temperature value that, once

converted to decimal, has to be multiplied by 0.1 ◦C,
leading to a final value equal to 26.6 ◦C;

• 0x68 identifies a humidity sensor;
• 0x6F is the humidity value that, once converted to

decimal, has to be multiplied by 0.5 and expressed
in %, leading to a final value equal to 55.5%.

As will be discussed later, in this work the CLPP format
will be exploited to perform automatic sensor discovery
at each (static or mobile) end node, in order to simplify
distributed environmental monitoring [22].

2.3 Alternative Data Representation Formats

Besides the CLPP format detailed in Subsection 2.2, there
exist alternative ways to represent data to be exchanged
between parties in a communication, obviously requiring
proper encoding/decoding operations in order to encode

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 4

and decode information. In the following, we overview
four possible alternative data representation formats in a
comparative way with respect to CLPP.

2.3.1 JavaScript Object Notation (JSON)

JavaScript Object Notation (JSON) is a text-based,
language-independent data interchange format based on
JavaScript object syntax and on a set of formatting rules
for the serialization and representation of structured data,
commonly used for transmitting data in Web applica-
tions [23]. In detail, many programming environments can
parse JSON (that is provided with the specific MIME type
application/json) which allows to represent primitive
(e.g., strings, etc.) and structured (e.g., objects and arrays)
types. This leads to a serialized sequence of tokens, with
strings being sequences of zero or more Unicode char-
acters to be enclosed inside double quotes, and objects
corresponding to an unordered collection of zero or more
name/value pairs to be enclosed inside square and curly
brackets. Colons and commas are used as name and value
separators.

Owing to the above features, it is clear that JSON rep-
resents a good candidate in scenarios where a lightweight
but structured data format is required, at the same time
not presenting constraints on the available payload size.
Therefore, JSON cannot be considered as an attractive
candidate for constrained information exchanges via Lo-
RaWAN packets (particularly with reference to CLPP). For
the sake of comparison, with reference to Fig. 2, assume
to represent each single CLPP block (composed by data
channel, data type, and “raw” data) as an array of JSON
objects, in which each single JSON object features (i) the
CLPP data type associated with the key t, (ii) the unit of
measurement being a-priori known thanks to a static map-
ping available in an external registry (similarly to CLPP),
(iii) the CLPP data channel associated with the key c, and
(iv) the “raw” data mapped as the value of a tuple with
key v. A possible corresponding JSON-encoded LoRaWAN
payload (with a length equal to 92 bytes) is shown in
Listing 1 (expanded on multiple lines for readability).

Listing 1: JSON-encoded LoRaWAN payload

[
{"c": "00", "t": "73", "v": "26FA"},
{"c": "01", "t": "67", "v": "010A"},
{"c": "02", "t": "68", "v": "6F"}

]

It can be thus concluded that CLPP is much more efficient,
in terms of compact data representation, than JSON.

2.3.2 Extensible Markup Language (XML)

Extensible Markup Language (XML) is a text-based
markup language (similar to HTML) defined for exchang-
ing information between systems (in general, in M2M
applications), and used to define the so-called XML doc-
uments [24]. In detail, each XML document is composed
of XML entities and needs to begin with a unique root
element. In order to encapsulate information, an XML

document can have a starting (case-sensitive) XML decla-
ration followed by several XML elements, denoted as XML
nodes or XML tags, to be enclosed in triangular brackets.
Moreover, each element can in turn contain multiple ele-
ments as its children, which need not to overlap (i.e., an
element’s end tag must have the same name as that of the
most recent unmatched start tag). Finally, as for the XML
declaration, even names and attributes (specifying single
properties through name/value pairs) of an XML element
are case-sensitive, too.

As highlighted for JSON, even XML is characterized
by a long data representation, difficult to be enclosed in
constrained payloads. Therefore, it cannot be considered
as a valid alternative with respect to CLPP. For the sake
of comparison, with reference to Fig. 2, assume that the
XML root element is represented by the XML tag <r> and
that each single CLPP block (composed by data channel,
data type, and “raw” data) is represented as a list of
XML elements, in which each single XML element <i>
features (i) the CLPP data type associated with the key
t, (ii) the unit of measurement being a-priori known,
thanks to a static mapping available in an external registry
(similarly to CLPP), (iii) the CLPP data channel associated
with the key c, and (iv) the “raw” data mapped as the
value of the XML element itself. A possible corresponding
XML-encoded LoRaWAN payload (with a length equal to
80 bytes) is shown in Listing 2 (expanded on multiple lines
for readability).

Listing 2: XML-encoded LoRaWAN payload

<r>
<i c="00" t="73">26FA</i>
<i c="01" t="67">010A</i>
<i c="02" t="68">6F</i>

</r>

As for JSON, it can be concluded in this case as well that
CLPP is more concise than XML.

2.3.3 Constrained RESTful Environments (CoRE) Link For-
mat

The Constrained RESTful Environments (CoRE) Link For-
mat is a serialization mechanism defined to describe (us-
ing a link-header style format [25]) relationships between
entities (e.g., CoAP resources) in constrained nodes and
networks, especially in M2M-like scenarios [26]. More in
detail, CoRE Link Format has an associated MIME type
(application/link-format), is encoded as UTF-8 (thus
each character should be represented “wasting” a byte of
space in the payload), and requires the use of commas to
separate multiple link descriptions.

Therefore, being similar to XML (except for the at-
tribute position inside the encoded payload), CoRE Link
Format requires a non-negligible payload length, which is
critical in the case payload size-constrained protocols have
to used (e.g., LoRaWAN). For the sake of comparison, with
reference to Fig. 2, assume to represent each single CLPP
block (composed by data channel, data type, and “raw”
data) as a list of link descriptors, in which each single link
descriptor features (i) a resource name starting with /r

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 5

and followed by an incremental index (e.g., /r0, /r1, etc.,
required to distinguish among multiple links), (ii) the CLPP
data type mapped as the value of a custom attribute t, (iii)
the unit of measurement being a-priori known thanks to a
static mapping available in an external registry (similarly
to CLPP), (iv) the CLPP data channel associated with a
custom attribute c, and (v) the “raw” data mapped as the
value of the standard attribute ct. A possible correspond-
ing CoRE Link Format-encoded LoRaWAN payload (with a
length equal to 87 bytes) is shown in Listing 3 (expanded
on multiple lines for readability).

Listing 3: CoRE Link Format-encoded LoRaWAN payload

</r0>;ct="26FA";t="73";c="00",
</r1>;ct="010A";t="67";c="01",
</r2>;ct="6F";t="68";c="02"

As in the previous cases, in this case as well CLPP is more
efficient (in terms of representation compactness) than
CoRE Link Format.

2.3.4 Custom Raw Data Encoding

As a final data representation approach, one may not
exploit well-known, standardized, and structured data
representation mechanisms, such as those mentioned in
Subsection 2.2 and Subsections 2.3.1–2.3.3. In this case,
one may encode the information to be sent from an on-field
source node toward remote entities through a customized
(raw bytes) representation. To this end, unlike CLPP, the
definition of a custom data formatting mechanism requires
to “manually” define encode/decoding policies for the
data to be exchanged. These policies, in turn, often (i)
strictly depend on the specific device’s vendor, (ii) have a
“position-based” significance (i.e., each byte has a specific
meaning depending on its position inside the payload, with
consequent decoding issues in the case of disturbed com-
munications), and (iii) require the vendor itself to release
documentation and specifications to allow the end user
to encode and decode the collected data. Hence, these
drawbacks may hinder the applicability of “custom-made”
encoding/decoding strategies with respect to standardized
(and constrained, in terms of payload length) solutions like
CLPP.

3 Related Works

In [27], cloud and edge computing are combined with
LoRaWAN to develop a campus air quality monitoring sys-
tem. No seamless integration of LPWAN-based end devices
is considered, as high-layer computing infrastructures are
exploited only for visualization and processing needs.

In [28], a probabilistic approach is proposed to enable
efficient sharing of LoRaWAN access networks between
different services/slices and integration of admission con-
trol mechanisms (expedient to the devices from trans-
mitting). In this case, the focus is on the physical layer
of the chosen communication protocol, allowing multiple
end nodes to send their messages toward natively defined
LoRaWAN high-layer systems (i.e., NS and AS), rather

than focusing on end nodes’ virtualization for enhanced
services.

In [29], the interest is on the integration of a 5G mobile
network (with very high capacity) to provide backbone
connectivity for the LoRaWAN architecture, thus focusing
not on a seamless integration at service layer but, rather,
on speeding up the transmission of information on the
backbone layer.

In [30], a solution to seamlessly integrate LoRaWAN
with 4G/5G mobile networks is proposed, claimed to be
transparent to LoRaWAN end devices since only the Lo-
RaWAN gateway needs to be modified. The integration
thus requires the modification of a component of the archi-
tecture, thus being not completely seamless and without
providing high-layer services to external consumers which
might request data collected by on-field LoRaWAN end
devices.

In [31], virtualization technologies are used to simulate
LoRaWAN at the application layer (i.e., the design, devel-
opment and testing for roaming in LoRaWAN networks
in the context of future smart cities). The focus is on the
simulation of such scenarios, rather than providing a way
to seamlessly enable high-layer services’ exploitation by
possible external entities interested in interacting with
LoRaWAN end nodes (in both uplink and downlink direc-
tions).

Given that the topics of the literature works summa-
rized above differ from the main topic of our paper, in the
following we detail and describe the design and implemen-
tation of a novel and effective virtualization architecture
to allow LoRaWAN (non-IP-based) end nodes to interact
seamlessly with IP-based nodes.

4 Container-based Virtualization Architec-
ture

The main goal of the proposed architecture is to create
replicas of LoRaWAN end nodes on top of the IP layer,
in order to manage different on-field mobile and static
sensing and actuating devices in a modular way (e.g.,
through an application layer control system). As detailed
in Section 1, our focus is not on the chosen virtualization
solution itself, but, instead, on the definition of a “high-
layer digital twin” of a set of LoRaWAN end nodes, which
natively do not support IP-based routing and inter-node
communication. To this end, the virtual replica of a phys-
ical LoRaWAN end node is denoted as virtual End Node
(vEN) and is implemented as a CoAP server (following
an IoT-like approach). Then, following this CoAP-oriented
approach, each sensor equipping a physical LoRaWAN
end node will be represented as a virtual CoAP resource
attached to its own vEN, thus allowing external CoAP-
enabled entities to virtually interact with the (physical)
LoRaWAN end nodes. In detail, CoAP has been chosen
thanks to its light traffic requirements (e.g., being based
on UDP instead of TCP) and native support to service
and resource discovery mechanisms [32]–[34] (even if re-
quiring additional information descriptors [35]), as well as

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 6

CoAP

Server

/noise

/oil-level

/position

LoRaWAN
end nodes

GW
Network Server

LoRaWAN ecosystem

virtual End Node

External
CoAP clients

Fig. 3: LoRaWAN architecture extended with the Virtual-
izer.

to increase the number of application protocols (e.g., the
traditional HTTP and MQTT protocols [36]) able to cooper-
ate with the LoRaWAN’s AS. This enables communication
heterogeneity in several IoT scenarios. We remark that, as
the aforementioned traditional protocols (HTTP, MQTT) to
be possibly adopted in IoT/IIoT scenarios, even CoAP is
not exempt from possible drawbacks (i.e., packet losses or
delays). Nevertheless, CoAP represents an effective choice
for the implementation of the “logical abstraction” frame-
work proposed in this manuscript for the following main
reasons: (i) “readyness-by-design” for IoT; (ii) lightweight
service discovery mechanisms; (iii) binary nature; (iv)
native support of the observing relation (“moving” the
pros of the publish/subscribe paradigm, representative of
MQTT, into a request/response-like protocol, like HTTP);
and (v) support to real-time instantiation of operating
CoAP resources on top of a CoAP server (unlike HTTP, in
which the same resources should be HTML documents or
predefined APIs).

As an example, consider an IoT context in which mobile
LoRaWAN end nodes are installed in a mobile vehicle
(e.g., an industrial forklift or a bulldozer), allowing them
to seamlessly interact with other equipment (e.g., auto-
matic barriers, safety cameras, and lights) during working
hours, as shown in Fig. 3. Each LoRaWAN end node can
send mobile vehicle-related data (e.g., oil level, in-vehicle
conditions, position), as well as information related to the
surrounding environment (e.g., air quality). The mobile
vehicles may also be equipped with safety controllers to
avoid certain areas or paths toward certain operational
locations.

Regardless of the scenario of interest, the proposed
virtualization architecture allows a seamless information
exchange, guaranteeing a transparent compatibility be-
tween (non-IP) LoRaWAN end nodes and IP-compliant
entities, thus leaving the “core” LoRaWAN architecture
unmodified (i.e., compliant with the corresponding defini-
tions and protocol specifications). Hence, the virtualiza-
tion add-on can be seen as a “proxy” among heteroge-
neous networks, allowing to model a LoRaWAN “ecosys-
tem” as a “black box” left unmodified by our virtual-
ization architecture, which would be deployed on top of
the LoRaWAN ecosystem itself. Since the LoRaWAN core
infrastructure is left as-is, the latency among LoRaWAN
nodes and IP-based nodes is the same experienced in

a classical LoRaWAN network (with some possibly addi-
tional minor processing delays). In particular, the specific
LoRaWAN end node operational mode (i.e., Class A, B, or
C) is not influenced (in its internal transmission/reception
intervals) by the proposed virtualization infrastructure.
As an example, should a LoRaWAN downlink message be
steered from the NS toward a specific LoRaWAN Class A
end node, this will always correspond to an asynchronous
operation (as downlink packets need to wait the first
available LoRaWAN receive slot to be sent from the NS
to the field). Hence, the downlink packets are queued in
the native LoRaWAN AS by the proposed virtualization
infrastructure as soon as its corresponding modules have
received this enqueuing request from an external entity,
but certainly in advance with respect to the reception slot
of the LoRaWAN end node. In the case of LoRaWAN Class
C end devices, the overall delay (from the time instant
at which an external entity requires to send a downlink
message to a LoRaWAN end node to the time instant at
which this packet will be queued in the core LoRaWAN NS)
would not be increased significantly by the presence of the
virtualization infrastructure, e.g., by exploiting native in-
tegrators provided by the classical LoRaWAN architecture
(e.g., via HTTP REpresentational State Transfer, REST,
Application Programming Interfaces, APIs).

The same transparent compatibility introduced above
holds for aspects depending on the LoRaWAN SF, which is
not affected by the proposed virtualization. The adoption
of the proposed virtualization architecture allows also data
routing among LoRaWAN end nodes (through their CoAP-
based virtual replicas). This would not be possible with
a “pure” LoRaWAN architecture, as LoRaWAN requires
that interactions should follow a “tree-like” structure, with
messages following the classic LoRaWAN uplink (from end
node to NS/AS) and downlink (from AS/NS to end node)
sequence, thus preventing a direct interaction among end
nodes.

In Fig. 4, we show the building blocks (and their inter-
actions) of the proposed virtualization architecture, whose
operations can be described as follows. Upon receiving
new data from a LoRaWAN end node (through the NS/AS),
the Data Manager (DM), shown in Fig. 4, looks for the
corresponding vEN and updates the value of the proper
resource, until new updates arrive. Therefore, the main
advantage of this approach is that if a node receives two
independent requests from an external IP-enabled entity
within a time interval shorter than TOFF, it can still use
the latest available data to reply to these requests, thus
providing a caching mechanism to the entire virtualization
infrastructure.

Moreover, as highlighted above, the resource discovery
functionality is another key aspect of the proposed virtu-
alization architecture, since when a LoRaWAN end node
is deployed on-field, the back-end architecture does not a-
priori know which data types will be sent. In the same way,
the LoRaWAN NS does not know in advance the amount
and nature of the sensors each LoRaWAN end node is
equipped with. Therefore, exploiting the CLPP format, it

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 7

Virtualizer

Core Manager virtual End Nodes

Network

Server

&
Application

Server

LoRaWAN

Resource
Directory

Docker container

Join
Manager

Downlink
Manager

Data
Manager

CoAP
Server@IP-1

/res-handler

/battery

/noise

/position

CoAP
Server@IP-2

/res-handler

/battery

/noise

/position

CoAP

Client

CoAP

Client

CoAP

Client

External nodes

1
2

3
4

5b

5a

A

B

C

D

Fig. 4: Building blocks and interactions of the virtualization architecture following the “parallel container” approach.

is possible to introduce automatic sensors’ discovery by
simply parsing the LoRaWAN packet’s payload. This is
even truer since: (i) LoRaWAN end nodes know which
kind of data they are producing, so they are aware of the
CLPP data encoding to be applied before sending their
information, while, on the other end; (ii) the proposed
virtualization infrastructure will be able to know the exact
amount of sensors maintained by each end node simply
by parsing the CLPP payload. Since the virtualization in-
frastructure is resourceful, it might interact with external
entities to retrieve additional information (e.g., the first
time an “unknown” payload arrives and has to be parsed).
According to this approach, the behavior of the LoRaWAN
network becomes transparent to external (CoAP and, more
generally, IP) clients.

Finally, from an implementation point of view, the
proposed virtualization architecture relies on the use of
Docker containers [37], thus ensuring isolation and inde-
pendence between the applications (i.e., CoAP servers)
executed inside them and possibly deployed on-premise
in local data centers. We highlight that there may be al-
ternative approaches to automatic sensor discovery (e.g.,
SLP [38], Zeroconf [39], mDNS [40], DNS-SD [41], etc.).
However, as discussed and motivated in Subsection 2.2
and Subsection 2.3, CLPP is preferrable as it is compact
and, thus, abides more effectively by LoRaWAN protocol’s
constraints.

We remark that future research activities will involve
the analysis (and comparison) of pros and cons between
an architectural deployment based on containers and a
corresponding deployment based on a different approach,
such as one based on microservices. In fact, both these ap-
proaches have recently emerged as attractive paradigms
revolutionizing how applications are built, deployed, and
scaled. In the following, we shortly highlight the benefits

of each approach.

• Containers give the developer (and the end user)
a lightweight and isolated environment in which
applications and libraries can be packed and en-
capsulated into a single unit. This ensures a consis-
tent behavior across different infrastructures and
avoids drawbacks due to different operating sys-
tems’ configurations, without worrying about un-
derlying infrastructure variations. Therefore, con-
tainers enable (i) seamless deployment and scala-
bility, (ii) high portability and isolation (leading to
enhanced security and stability since changes or
issues within a container do not affect others), (iii)
efficiency, in terms of fewer consumed resources (if
compared to traditional VMs), and (iv) fast startup
times.

• Architectures based on microservices tend to be
exploited when there is the need to “break down”
complex applications into smaller and independent
services, each one specifically responsible for a
particular functionality and interacting with other
microservices through APIs (as shared information
channels). Therefore, microservice-based architec-
tures can, in general, benefit from (i) granular
scaling, with only high demand specific services
having to be scaled (thus optimizing resources uti-
lization), (ii) fault isolation, since if one service
experiences criticalities or fails, it can be singularly
rescued without affecting the overall application
life cycle (thus enhancing the system’s resilience),
and (iii) technology heterogeneity, as deployed mi-
croservices may be based on different frameworks
and programming languages, thus enhancing the
system’s flexibility.

It is clear that these two approaches cannot be con-

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 8

sidered as mutually exclusive, while, instead, as comple-
mentary to each other. A container-based approach seems
preferrable for our proposed virtualization architecture,
since the initial deployment may require to instantiate
multiple clones (i.e., containers) of the same instance, in
order to virtualize multiple on-field LoRaWAN end nodes:
each container runs the same applications written with the
same programming language. Nevertheless, the design,
deployment, and orchestration of microservices within
containers is an attractive research direction, expedient
to enhance performance, security, and management of our
proposed virtualization architecture. This goes beyond the
scope of the current manuscript and is subject of future
research.

4.1 “Parallel Container” Virtualization: One Server
per Container

With reference to Fig. 4, a “parallel container” approach
requires that one single Docker container is started for
each vEN, i.e., only one CoAP server runs inside a con-
tainer. More in detail, the operations of the virtualized
architecture involve the following tasks: (i) solid arrows,
describing the “discovery” phase; (ii) dashed arrows, rep-
resenting “regular” operations carried out by LoRaWAN
end nodes (e.g., uplink messages collected by vENs and
sent, as CoAP response’s payload, to external CoAP enti-
ties); and (iii) dotted arrows, denoting the data flows for
LoRaWAN downlink messages.

As highlighted in Subsection 2.1, in the proposed archi-
tecture the OTAA join procedure mechanism is adopted for
the LoRaWAN end nodes, in order to provide a higher self-
configurability. More generally, each specific LoRaWAN
NS may be properly implemented and uses a specific
approach to make collected data available to external
non-LoRaWAN networks. To this end, the most common
approaches rely on (i) the REST paradigm, through spe-
cific APIs, (ii) the MQTT protocol, and (iii) the WebSocket
protocol [42]. Although all these approaches are effective,
in the proposed virtualization architecture MQTT will be
considered due to its publish/subscribe nature, useful to
notify the presence of a new data, instead of continuously
polling an endpoint to check the availability of a new
information (e.g., according to the REST paradigm).1 In
particular, the LoRaWAN NS exposes the following three
MQTT topics:

• join events, on the join/ MQTT topic;
• uplink messages, on the uplink/ MQTT topic;
• downlink messages, on the downlink/ MQTT topic.

In detail, once a LoRaWAN end node joins the network,
the join event is published in the corresponding MQTT
topic and the Join Manager, subscribed to this topic via
a MQTT client (step 1 in Fig. 4), retrieves the device
address of the LoRaWAN end node and instantiates a

1. Being WebSocket and MQTT similar (in terms of operational
paradigm), the adoption of WebSockets in place of MQTT and the
corresponding performance evaluation is left for future research.

corresponding Docker container where the vEN will be (i)
executed (step 2 in Fig. 4) with a certain IP address and
(ii) associated with the “discovered” address. Then, for
each LoRaWAN end node, a new container, associated with
one vEN, is instantiated and started. Moreover, the vEN is
added to the company’s Resource Directory (RD), which
acts as a sort of “white pages” service and is in charge of
listing all the CoAP resources of the vENs corresponding
to deployed physical nodes.

Once a vEN is created, an additional “reserved” CoAP
resource, denoted as /res-handler and not visible outside
the Virtualizer, is attached to the corresponding CoAP
server. In detail, this specific CoAP resource is used to
manage the sensors’ discovery phase—as stated earlier,
resource discovery is a key feature in IoT scenarios, avoid-
ing an a-priori knowledge of the number and nature of the
available LoRaWAN end nodes.

According to the approach presented in Subsection 2.2,
the CLPP format will be exploited to allow automatic
discovery of the sensors equipping a LoRaWAN end node
by parsing the LoRaWAN packet’s payload. In detail, for
each sensor installed in the end node, the corresponding
vEN generates a CoAP resource as a virtual replica of the
specific sensor. Then, the MQTT client contained inside
the DM listens to the uplink/ topic and gathers data
from the NS (step 3 in Fig. 4) and, once a packet is
received through this MQTT topic, the Payload Parser
Block (PPB) module is triggered. Depending on the type of
received data and the resource list, the PPB can perform
two different actions:

• if the sensor is new, no CoAP resource is associ-
ated with it and, therefore, a sensor discovery is
performed;

• if the CoAP resource already exists, the received
packet corresponds to an update packet and, there-
fore, the PPB (i) extracts the values from the packet
and (ii) updates the related CoAP resources.

In detail, in the presence of a new sensor, the PPB
parses the received payload, analyzing the CLPP data
types found in the message, and, then, requires the DM
to send a CoAP POST request to the specific vEN replica
of the LoRaWAN end node (step 4 in Fig. 4) targeting
the proper CoAP resource endpoint (as defined in Table 2)
and the name of the CoAP resource that must be created,
as POST payload. Then, as shown in step 5a in Fig. 4,
the vEN eventually creates the requested CoAP resource:
as an example, with reference to Fig. 2, if the CLPP
data type corresponds to 0x73, then a /pressure CoAP
resource is created and executed. In general, the syntax
adopted in the proposed virtualization architecture is kept
as simple as possible, with the name of the CoAP resource
corresponding to the human-readable name of the sensor,
as detailed in Table 2.

More in detail, considering the uplink CLPP payload
shown in Fig. 2, for each sensor attached to the “real”
LoRaWAN end node, the PPB obtains the data channel and
type (in green and red colors in Fig. 2, respectively), and

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 9

TABLE 2: Sensors mapping on CoAP resources.

Sensor CoAP Resource Endpoint
Battery voltage reader /battery
Temperature /temp
Humidity /humidity
Accelerometer /accelerometer
Noise sensor /noise
Filling level /oil-level
Air quality /air-quality
GPS /position

raw data. Then, the PPB decodes the values according to
the bit resolution rules shown in Table 1 and, for each
sensor, the DM sends a CoAP PUT request (step B in
Fig. 4) to the CoAP resource corresponding to the specific
sensor, with the decoded values as CoAP PUT’s payload.

The following CoAP POST requests will be sent to the
vEN (available at its <vEN-IP> IP address) in order to
associate the proper CoAP resources with the vEN:

• POST /pressure to coap://<vEN-IP>/res-handler

• POST /temp to coap://<vEN-IP>/res-handler

• POST /humidity to coap://<vEN-IP>/res-handler

Regarding the update task on the different sensors, the
following CoAP PUT requests will be sent to the specific
vEN:

• PUT 997.8 to coap://<vEN-IP>/pressure

• PUT 26.6 to coap://<vEN-IP>/temp

• PUT 55.5 to coap://<vEN-IP>/humidity

If the vEN is still present in the RD, only the sensors’
update is performed. Once vENs and their related CoAP
resources are discovered and added to the RD, the rest
of the message exchange corresponds to the classical
exchange between CoAP nodes [8,43]: an external CoAP
client looks for resources of interest in the RD and, then,
sends CoAP-supported requests to the vENs.

Finally, if an external CoAP-enabled node is interested
in sending a downlink message to a LoRaWAN end node
(e.g., requesting a vehicle’s position or an oil level), it
simply needs to target a CoAP PUT request to the vEN’s
CoAP resource. In turn, this request will trigger the DM
(step C in Fig. 4) that, eventually, forwards it to the NS
(step D in Fig. 4) to reach the LoRaWAN end node with
the specific downlink payload.

4.2 “Parallel vEN” Virtualization: Multiple vENs per
Container

Unlike the virtualization approach proposed in Subsec-
tion 4.1, we now consider multiple vENs running in the
same Docker container. In this case, instead of executing
vENs in separate Docker containers (one vEN per con-
tainer, with different IP addresses), a few vENs run in the
same container, sharing the same IP but being identified
by different ports (at transport layer). Hence, this solution
makes vENs less independent but, as will be discussed
in Section 5, it represents a good compromise for its use

in constrained devices (e.g., because of deployments in
remote areas far from a stable energy supply).

With respect to the “parallel container” approach dis-
cussed in Subsection 4.1, in the “parallel vEN” approach
there is a new entity, implemented as a CoAP server
and denoted as vEN Handler, which (i) has to handle
the generation of new vENs, (ii) is accessible only from
the Join Manager, and (iii) exposes (only internally to
the Virtualizer) the /ven-handler CoAP resource. As in
Subsection 4.1, when a LoRaWAN end node joins the Lo-
RaWAN network, the join event is published in the join/
MQTT topic and the Join Manager, subscribed to this topic
(step 1 in Fig. 5), retrieves the LoRaWAN end node’s
device address and sends a CoAP POST request to the
/ven-handler CoAP resource, with the LoRaWAN device’s
address as payload (step 2 in Fig. 5). Then, the vEN Han-
dler starts a Docker container with a specific IP address
(step 3 in Fig. 5). In this container, a vEN is created on
a UDP port associated with the “discovered” address and
added to the RD. Thanks to this approach, once the vEN is
started, its reserved /res-handler CoAP resource is also
started. Therefore, in the case new LoRaWAN end nodes
are discovered (e.g., new mobile nodes are deployed to
monitor specific environments for safety reasons), their
vENs will run inside the same Docker container, with each
vEN associated with a specific port.

Finally, the following steps remain the same as dis-
cussed in Subsection 4.1: CoAP resources are added send-
ing a CoAP POST request to /res-handler (step 5 in
Fig. 5) and updated sending a CoAP PUT request to the
corresponding resource (step B in Fig. 5).

5 Experimental Performance Evaluation

5.1 Programming Language Evaluation

The proposed virtualization architecture has been de-
veloped in Java. This makes the Virtualizer compatible
with a generic computing platform where a Java Virtual
Machine (JVM) can run. Moreover, the choice of Java is
also motivated by the availability of a complete CoAP
implementation (based on the Californium library [44])
and the Paho library [45], in detail enabling to use CoAP
and to implement the MQTT client needed to subscribe to
the MQTT topics described in Section 4, respectively.

For the sake of completeness, it should be mentioned
that alternative programming languages might be adopted
to develop and implement the virtualization architecture
detailed in Section 4. The choice of alternative languages
represents a future research extension, possibly targeting
a performance comparison (among different languages)
in terms of (i) amount of code statements required to
define the same behavior, (ii) execution time, (iii) required
host resources (e.g., CPU, RAM, persistent storage, etc.),
and (iv) end-user experience. To this end, the pros in
favor of the Java language can be summarized as follows
(as anticipated above): (i) its widespread use in several
fields and contexts, making it attractive to developers who
can carry out supplementary developments and, usually,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 10

Virtualizer

Core Manager virtual End Nodes

Network

Server

&
Application

Server

LoRaWAN

Resource
Directory

Docker container
vEN Handler

/ven-handler

Join
Manager

Downlink
Manager

Data
Manager

CoAP
Server:5684

/res-handler

/battery

/noise

/position

CoAP
Server:5689

/res-handler

/battery

/noise

/position

CoAP

Client

CoAP

Client

CoAP

Client

External nodes

1

2

3

4
5

6b

6a

A

B

C

D

Fig. 5: Building blocks and interactions of the virtualization architecture following the “parallel vEN” approach.

allowing faster updates [46]; (ii) its portability across
heterogeneous hardware devices, especially thanks to the
presence of a run-time system (i.e., the JVM) able to
make use of hardware resources without the developers’
intervention—exploiting the traditional “write once, run
everywhere” philosophy of Java [47]. The cons against
the use of Java can be summarized as follows: (i) the
need of a JVM for running the source code, instead of the
execution of a compiled executable file; (ii) the availability
of particular data structures and code statements that
may speed up (at least at low levels) the execution of a
particular task. The outlined pros and cons highlight the
fact that there no programming language can be a-propri
chosen as the best, since the choice of the programming
language in a certain scenario may depend on several
factors. Nevertheless, as discussed before, an analysis and
comparison of different approaches and possibilities (even
developing different parts of our proposed virtualization
infrastructure through different programming languages,
and establishing an inter-process data sharing through
internal communication buses) represents an interesting
research direction.

5.2 Experimental Setup

The Virtualizer has been tested on two different systems:
(i) a laptop with an Intel i7-7700HQ CPU, running Ubuntu
20.10 OS; and (ii) a Raspberry Pi 3 Model B (RPi3) Single
Board Computer (SBC), running Raspbian OS. In detail,
the RPi3 has been chosen to evaluate the feasibility of the
proposed approach with an IoT node, which could be po-
tentially deployed on-premise in the scenarios mentioned
in Section 1. In fact, the RPi3 is widely adopted in the IoT
arena and guarantees a very attractive trade-off among
complexity, performance, and cost. In other words, the
RPi3 can be interpreted as a “technology enabler” for the

IoT. The LoRaWAN end nodes are based on STM STEVAL-
STRKT01 LoRa devices [48], equipped with a Cortex M0+
CPU and different sensors (e.g., temperature, humidity,
accelerometer) and interfaces (e.g., GNSS). Due to their
portability, the LoRaWAN end nodes (both static or mobile)
can be placed flexibly inside a production plant, as well as
worn by workers for safety monitoring purposes. Finally,
both LoRaWAN GW and NS run on top of two RPi3 boards,
with one acting as NS running an open source software
implementation denoted as lorawan-server [49].

Although the proposed virtualization architecture has
been tested also using the public LoRaWAN network
“The Things Network” (TTN) [50] (thus confirming the
modularity of the proposed container-based approach and
demonstrating its independence from a specific network
provider), in order to fully control the LoRaWAN network’s
settings the performance evaluation has been carried out
on a private LoRaWAN network. This also highlights how
a company may benefit (from both technical and econom-
ical sides) from deploying its own LoRaWAN network to
support its transition toward IoT.

In order to complement the experimental performance
analysis compliant with the duty-cycle limitations of the
EU ISM bands, a simulation environment has been de-
veloped (at application layer) to investigate the behavior
of the proposed virtualization approach. This has been
achieved by deploying a Java-based application (later de-
noted as node simulator) composed of the following soft-
ware modules: (i) a module (identified as Creator in Fig. 6)
corresponding to a CoAP client triggering the Virtualizer
to start a variable number of new vENs as CoAP servers;
and (ii) a module (identified as Updater in Fig. 6) updating
the values of the vENs’ resources.

As shown in Fig. 6, the experimental setup is composed
of the node simulator (shown on the left side of Fig. 6) con-

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 11

Virtualizer

coap://192.168.1.146:5684/air-quality

coap://192.168.1.146:5684/noise

coap://192.168.1.146:5684/battery

coap://192.168.1.146:5684/oil-level

coap://192.168.1.146:5684/accelerometer

coap://192.168.1.146:5684/position
Node Simulator

Creator Updater

CoAP Clients

LAN
CoAP

Fig. 6: Setup for the experimental evaluation of the proposed virtualization architecture, with the Virtualizer hosted on
a RPi3. The experimental performance evaluation has also been carried out hosting the Virtualizer on a laptop.

nected via an Ethernet-based Local Area Network (LAN) to
the Virtualizer. In Fig. 6, the Virtualizer is implemented on
a RPi3, but the system performance with the Virtualizer
running on a laptop has also been evaluated (this is not
shown in Fig. 6 for simplicity). Then, external CoAP clients
(shown on the right side of Fig. 6) are started with two
settings: (i) set in observing mode on the CoAP resources
or (ii) set in polling mode on the CoAP resources, thus
emitting periodic CoAP GET requests. In observing mode,
the value of a CoAP resource is automatically sent from the
vEN to the external “listening” CoAP client each time the
vEN’s CoAP resource is updated—in detail, “stimulated”
by the Updater (inside the node simulator) triggering the
Virtualizer. In the experimental evaluation, we compare (i)
the CPU percentage utilization by the Virtualizer hosted
on laptop or RPi3 and (ii) the RAM utilization by the Virtu-
alizer hosted on the laptop—as motivated in the following,
due to some restrictions the RPi3-based implementation of
the Virtualizer does not allow to evaluate the RAM utiliza-
tion. In particular, the performance differences between
observing and polling strategies are first evaluated and,
then, the different behaviors of “parallel container” and
“parallel vEN” approaches are investigated. In detail, both
performance indicators are retrieved through the docker
stats command-line tool given by the Docker daemon—
this tool does not provide information on the RAM on the
RPi3. In order to evaluate the CPU percentage utilization,
in all the experimental campaigns the vENs associated
with the LoRaWAN-enabled IoT nodes (based on STM
STEVAL-STRKT01) are considered, with the sensors ex-
posed as resources according to Table 2.

5.3 CPU Percentage Utilization

The first performance evaluation has been carried out
analyzing the CPU percentage utilization on both laptop
and RPi3. As shown in Fig. 7, the containerized architec-
ture does not require significant resources. In detail, three
phases can be identified in both experimented processing
platforms: (i) JVM loading; (ii) resource discovery, in which
the CoAP resources are added to the vEN; and (iii) observe
notifications, in which a vEN sends updates to the exter-
nal observing CoAP client(s)—we only refer to observing
because both observing and polling modes lead the same
CPU utilization. From the obtained experimental results,
it is clear how the first phase is the most expensive for

Starting JVM

Discovery

Observe notifications

Fig. 7: Experimental CPU percentage utilization on laptop
(ASUS with i7 CPU) and RPi3.

both laptop and RPi3, as both the devices present CPU
percentage utilization’s peaks. Moreover, considering the
CPU peaks associated with JVM loading (20% on the laptop
and 58% on the RPi3), we can conclude that if multiple
physical nodes are virtualized at the same time and one
container is started for each vEN, the CPU percentage
utilization should be higher than 100% and, thus, the
system would immediately crash.

Focusing on the JVM loading time, one can observe
that it is up to 3 s on the laptop and up to 8 s on the
RPi3. Therefore, on the RPi3, if two nodes are discovered
in less than 10 s, then the CPU would saturate (it should
reach a CPU percentage utilization equal to 116%). Hence,
this motivates the need to define a “guard (time) interval.”
During performance evaluation, we discovered that the
laptop (given the specific CPU equipping the laptop itself)
can start up to 20 containers/JVMs without any problem;
the RPi3 begins instead to be unstable if we run 3 contain-
ers/JVMs at the same time. Therefore, in order to be more
conservative, the guard interval for each newly discovered
device has been set to 5 s on the laptop and to 10 s on
the RPi3. Finally, considering that a LoRaWAN network
is “quasi-static” (with sporadic transmissions and almost
static network topology, even in the presence of mobile

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 12

nodes in a limited region), this delay in the discovery
phase should not represent a relevant issue and could be
tolerated in real IoT deployments.

We make the following final observations. The high
CPU consumption (e.g., in terms of percentage utilization
peaks) in the RPi3 is likely due to the chosen programming
language: Java guarantees good performance at the cost of
higher resource consumption. If small networks (handled
by a RPi3-like board) are considered, then the number
of devices to be discovered is likely to be smaller. In the
presence of denser and wider networks, with hundreds of
devices, the Virtualizer needs to run on a dedicated server
machine (either in the Cloud or on-premise) with higher
computational power. Considering the discovery phase,
the results are comparable: the laptop’s CPU percentage
utilization ratio is around 8%, whereas the RPi3’s CPU per-
centage utilization is around 14%. Finally, focusing on the
observing notifications, the interactions with the external
CoAP clients result in a CPU percentage utilization in the
interval 2%÷ 8% for both laptop and RPi3.

5.4 Comparison between Observing and Polling
Strategies from External CoAP Clients

Given the experimental setup shown in Fig. 6, we in-
vestigate the scalability of the proposed container-based
virtualization architecture. In detail, we set a variable
number of external CoAP clients (selected among 50, 100,
and 200) and we assume that each of them retrieves
all the CoAP resources from the Virtualizer. Hence, we
exploit both observing and polling approaches with the
same update interval: (i) in observing mode, the Updater
module (with reference to Fig. 6) updates the value of each
CoAP resource every 10 min (which may be a reasonable
interval in IoT scenarios, in the presence of non-critical
monitoring tasks), whereas (ii) in polling mode, CoAP GET
requests are sent by external clients every 10 min—this
allows to perform a fair comparison with the observing
mode.

As shown in Fig. 8, with 50 external CoAP clients, ob-
serving and polling modes return different results. In the
beginning of the experimental evaluation, the observing
setup requires an increased RAM utilization, while after
three rounds of updates—we recall that, every 10 min, the
CoAP resources are updated—the required RAM amount
basically converges (there are small increments from then
on). At the opposite, RAM utilization increases at each
round with CoAP resource polling: after three rounds, it
is higher than in observing mode. Considering the experi-
ment with 100 external CoAP clients, in the beginning the
difference between observing and polling modes is quite
relevant. However, also in this case the RAM required
in observing mode oscillates, with limited fluctuations,
around 73 MB. In polling mode, instead, the RAM utiliza-
tion slowly increases and, eventually, reaches the same
value as in observing mode. Finally, the evaluation with
200 external CoAP clients shows that polling mode leads
to the same performance as in the experiment with 100

Fig. 8: Experimental RAM utilization comparison (on an
ASUS laptop with i7 CPU), splitting the CoAP clients in
observing and polling.

clients, while the observing mode requires an higher RAM
occupation with 200 external CoAP clients then with 100.

Therefore, the results shown in Fig. 8 highlight that:
(i) with 50 external CoAP clients, it is preferrable to
set the observing mode for all the clients; (ii) with 100
CoAP clients, there are no significant differences between
observing and polling modes; and (iii) with 200 (or more)
CoAP clients, it is convenient to adopt the polling mode.
A good trade-off, e.g., because the resources are not
regularly updated (we recall that, in observing mode,
a notification is sent only when the CoAP resource is
updated), would be to set a portion of the external CoAP
clients in polling mode and the remaining ones in observ-
ing mode. In fact, looking at the case with 200 external
CoAP clients, since the performance in both polling and
observing modes is the same as in the case with 100 nodes,
the best solution would be to evenly split the 200 clients, as
shown in Fig. 8. As expected, this “network optimization”
leads to a performance between the one with all 200 CoAP
clients set in observing mode and the one with all 200
CoAP clients set in polling mode.

5.5 Comparison Between Virtualization Ap-
proaches: “Parallel Container” versus “Parallel
vEN”

The risk of CPU saturation due to simultaneous virtual-
ization of multiple nodes can be solved running multiple
vENs in the same container. As shown in Fig. 7, most of
the CPU is required during the JVM loading. Therefore,
an effective approach is to exploit the already running
JVM and start several vENs in the same JVM. In this
experimental evaluation, we first start one container with
one vEN. Then, with a pre-set activation interval of 5 min
(expedient to highlight the “RAM steps” in Fig. 9), we start
a new vEN, reaching the final configuration with 5 vENs.
This has been repeated with 10, 15, and 20 vENs.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 13

Fig. 9: Experimental comparison between RAM memory
occupation (on an ASUS laptop with i7 CPU) with “parallel
container” and “parallel vEN” virtualization approaches.

In order to extend our analysis, we start two contain-
ers, each running a vEN, and evaluate the total occupied
memory by adding the occupied RAM of each single con-
tainer. The results, shown in Fig. 9, can be commented
focusing on the steady-state regime (highlighted in gray).
The setup with 20 vENs per container is comparable to the
scenario with two vENs running in two separated contain-
ers. This is reasonable, since, when a vEN is started, most
of the memory (around 25 MB) is occupied by the JVM:
running two containers would thus lead to a utilization of
50 MB only for the JVMs. In order to obtain the same RAM
utilization with a single container, indicating the memory
occupied by a vEN as vENRAM, the optimal number of
vENs per container can be expressed as follows:

NvEN =

⌊
2JVMRAM − JVMRAM

vENRAM

⌋
. (1)

Under the assumption that vENRAM = 1.2 MB, then
NvEN = 20.

Therefore, one can conclude that, in the case of con-
strained environments (e.g., in IoT contexts), a feasible
approach would be to start more containers, each of them
running multiple vENs, and possibly grouping vENs with
the same subset of functionalities/services.

Finally, we comment on the challenges at each “sub-
layer” of the proposed container-based virtualization ar-
chitecture (e.g., private/public “core” LoRaWAN network,
virtualization layer, and CoAP-based layer) [51]. No par-
ticular challenges are envisioned in any of them, since:
(i) known security aspects and vulnerabilities of “pure”
LoRaWAN networks [52,53] are not worsened by the vir-
tualization layer and have still to be managed in the “core”
LoRaWAN layer; (ii) threats and vulnerabilities related
to virtualization platforms and orchestrators [54] do not
affect the LoRaWAN component; and (iii) the application

layer suffers from well-known CoAP-related vulnerabili-
ties [55], that should be dealt with at this layer. In other
words, the proposed virtualization architecture does not
introduce vulnerabilities in any “sub-layer.”

5.6 Performance Comparison Between Data For-
mats

We now investigate, in a comparative way, how the data
formats discussed in Section 2 (namely: CLPP, presented in
Subsection 2.2; JSON, presented in Subsection 2.3.1; XML,
presented in Subsection 2.3.2; and CoRE Link Format,
presented in Subsection 2.3.3) adapt to the constraints
of the LoRaWAN protocol, in terms of information encod-
ing/decoding between on-field LoRaWAN end devices and
high-layer entities.

In order to compare the considered data formats, we
assume (according to the assumptions adopted for CLPP
in Subsection 2.2 and with reference to the information
contained in Fig. 2) that each “raw packet” contains
1 byte for the data channel, 1 byte for the data type,
and 1 byte for the sensor data (e.g., humidity). We de-
note the number of required bytes of data format d ∈
{CLPP, JSON,XML,CoRE} as Lbytesd . In detail, since
CLPP does not require any delimiter, its corresponding
number of required bytes LbytesCLPP

can be expressed as

LbytesCLPP
= 3 · nraw . (2)

With regard to JSON, as shown in Listing 1, it requires
2 external square brackets. Then, for each raw packet
to be encoded, JSON needs 2 curly brackets (enclosing
the raw packet as a JSON object), 26 bytes for encoding
the raw packet itself, and, optionally, a comma for each
represented raw packet (except for the last one), should
more raw packets be encoded. Then, its corresponding
number of required bytes LbytesJSON

can be expressed as
follows:

LbytesJSON
= 2 + 2 · nraw + 26 · nraw + nraw − 1

= 29 · nraw + 1 . (3)

Concerning XML, as shown in Listing 2, it requires: a 3-
byte opening XML root element and a corresponding 4-
byte closing XML root element; and 23 bytes for encoding
each raw packet. Then, its corresponding number of re-
quired bytes LbytesXML

can be expressed as follows:

LbytesXML
= 3 + 4 + 23 · nraw

= 23 · nraw + 7 . (4)

Finally, with regard to CoRE Link Format, as shown in List-
ing 3, given the notation assumption on the resource name
starting with /r and followed by an incremental index
(as detailed in Subsection 2.3.3), it requires a number of
bytes α ∈ {27, 28} for encoding each raw packet—α = 27
for the first 9 raw packets, and α = 28 for the following
ones—and, optionally, a comma for each represented raw
packet (except for the last one), should more raw packets

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 14

Fig. 10: Number of required bytes as a function of the
number of raw packets to be sent, for the chosen data
formatting mechanisms: CLPP, JSON, XML, CoRE Link
Format.

be encoded. Then, its corresponding number of required
bytes LbytesCoRE

can be expressed as follows:

LbytesCoRE
= α · nraw + nraw − 1

= (α+ 1) · nraw − 1 . (5)

In Fig. 10, the number of required bytes Lbytes is shown
as a function of the number of raw packets nraw to be
sent, for the chosen data formatting mechanisms (CLPP,
JSON, XML, CoRE Link Format), according to Eqs. (2)–(5).
Fig. 11, Fig. 12, Fig. 13, and Fig. 14 show the total number
of LoRaWAN packets needed (denoted as nLoRaWAN), as
a function of of the number of raw packets nraw to be
sent, in the cases with CLPP, JSON, XML, and CoRE
Link Format, respectively. For the sake of comparison,
we show them considering the chosen LoRaWAN SFs, de-
noting the maximum allowed payload for each LoRaWAN
SF as ℓSF, and taking into account that: SF7 and SF8
allow a maximum 222-byte payload (ℓSF7 = ℓSF8 = 222);
SF9 allows a maximum 115-byte payload (ℓSF9 = 115);
SF10, SF11, and SF12 allow a maximum 51-byte payload
(ℓSF10 = ℓSF11 = ℓSF12 = 51). Therefore, the total number
of LoRaWAN packets, as a function of the number of raw
packets to be sent, for the chosen data representation
format d ∈ {CLPP, JSON,XML,CoRE}, and the chosen
LoRaWAN SF ∈ {SF7,SF8, . . . ,SF12}, can be expressed
as follows:

n
(SF)
LoRaWANd

=

⌈
Lbytesd

ℓSF

⌉
. (6)

In order to further investigate the impact of the con-
sidered data formats, we compare directly the encoding
efficiencies of the various data formats for a given SF. In
Fig. 15, Fig. 16, and Fig. 17, the number of LoRaWAN
packets is shown as a function of the number of raw
packets in the cases with SF7-SF8, SF9, and SF10-SF12,
respectively.

From all the results presented, it clearly emerges that
CLPP is the most efficient data formatting strategy, requir-
ing the smallest number of LoRaWAN packets regardless
of the chosen LoRaWAN SF, especially for a large number
of raw packets to be sent.

Fig. 11: Number of CLPP-encoded LoRaWAN packets as
a function of the number of raw packets to be sent, for
various values of the SF.

Fig. 12: Number of JSON-encoded LoRaWAN packets as
a function of the number of raw packets to be sent, for
various values of the SF.

Fig. 13: Number of XML-encoded LoRaWAN packets as
a function of the number of raw packets to be sent, for
various values of the SF.

6 Conclusions

In this work, a container-based virtualization architec-
ture for IoT scenarios with LoRaWAN nodes has been
presented. Each LoRaWAN end node is virtualized as a
CoAP server, denoted as vEN, in a central Virtualizer entity
interacting with the LoRaWAN NS. The sensors equipping
each LoRaWAN end node can be discovered by analyzing
its packets’ payload (encoded according to CLPP format)
and emulated as CoAP resources associated with the vEN
representing the virtualized version of the LoRaWAN end
node. In this way, following a digital twin-like strategy,
an IP-based external CoAP client can virtually interact

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 15

Fig. 14: Number of CoRE Link Format-encoded LoRaWAN
packets as a function of the number of raw packets to be
sent, for various values of the SF.

Fig. 15: Number of LoRaWAN packets as a function of the
number of raw packets to be sent adopting a LoRaWAN
SF equal to SF7-SF8 (sharing the same maximum payload
length ℓSF7 = ℓSF8 = 222 bytes), shown for each consid-
ered data representation format.

Fig. 16: Number of LoRaWAN packets as a function of the
number of raw packets to be sent adopting a LoRaWAN
SF9 (having a maximum payload length ℓSF9 = 115 bytes),
shown for each considered data representation format.

with a LoRaWAN end node in both uplink and downlink
directions.

The proposed virtualization approach allows both com-
munication and routing among LoRaWAN nodes, thus
overcoming the native impossibility of inter-node com-
munication (imposed by the LoRaWAN’s specifications)
and simplifying H2M and M2M approaches. In fact, the
proposed LoRaWAN-to-IP conversion does not affect the
original LoRaWAN stack and has no impact on the per-
formance of the LoRaWAN end nodes, in terms of power

Fig. 17: Number of LoRaWAN packets as a function of the
number of raw packets to be sent adopting a LoRaWAN SF
equal to SF10-SF12 (sharing the same maximum payload
length ℓSF10 = ℓSF11 = ℓSF12 = 51 bytes), shown for each
considered data representation format.

and operational requirements (e.g., LoRaWAN’s Class A,
B, or C, as well as SF value). To this end, the LoRaWAN
network’s behavior is completely transparent to external
CoAP clients, which are unaware of the real nature of the
entities hosting sensors and sending updated values to
their neighboring LoRaWAN GWs. The proposed approach
can be further extended to other types of networks and
application layer protocols, thus making the integration
of heterogeneous IoT devices feasible. For example, it
could be possible to define proper adaptation and protocol
translation mechanisms to enable HTTP-based clients to
interact with the LoRaWAN environment: this could be the
case of a control system in an industrial environment.

We remark that the focus of the proposed virtualiza-
tion architecture is not on the specific adopted virtual-
ization software, but, rather, on the virtualization of the
functionalities of each LoRaWAN end node, thus exploit-
ing a Virtual Network Function (VNF)-like strategy. Our
experimental evaluation has highlighted the feasibility
of the proposed virtualization architecture on a RPi3, a
widely adopted IoT SBC. In general, two virtualization
approaches have been compared: (i) running one vEN per
container and (ii) running multiple vENs per container.
The main finding is that the best solution is hybrid: there
should be several containers, each running more than
one vEN. Finally, the proposed container-based architec-
ture has the advantage of being compliant with standard
protocols, such as CoAP, which is relevant in IoT-oriented
scenarios. To this end, further research activities (besides
those already mentioned in the manuscript) will focus
on comparisons between the current architecture and an
equivalent implementation where CoAP is replaced by
MQTT, another widely adopted communication protocol in
IoT scenarios.

Acknowledgments

The work of L. Davoli and G. Ferrari received funding
from the European Union’s Horizon 2020 research and
innovation program ECSEL Joint Undertaking (JU) un-
der grant agreements: No. 876019, ADACORSA project -

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 16

“Airborne Data Collection on Resilient System Architec-
tures;” No. 876038, InSecTT project - “Intelligent Secure
Trustable Things.” It has also received funding from the
European Union’s Horizon Europe research and innova-
tion program Key Digital Technology (KDT) JU under grant
agreement No. 101097267, OPEVA project - “OPtimization
of Electric Vehicle Autonomy.” Finally, we acknowledge
also partial support from the Agritech project - “National
Research Centre for Agricultural Technologies,” project
code CN00000022, funded under the National Recovery
and Resilience Plan (NRRP), Mission 4 Component 2 In-
vestment 1.4 - Call for tender no. 3138 of 16/12/2021 of
Italian Ministry of University and Research funded by the
European Union – NextGenerationEU, Concession Decree
no. 1032 of 17/06/2022 adopted by the Italian Ministry
of University and Research. The ECSEL/KDT JUs received
support from the European Union’s Horizon 2020/Horizon
Europe research and innovation programme and the na-
tions involved in the mentioned projects. The work reflects
only the authors’ views; the European Commission is not
responsible for any use that may be made of the informa-
tion it contains.

References

[1] M. Mangia et al., “Rakeness-based compressed sensing and
hub spreading to administer short/long-range communication
tradeoff in iot settings,” IEEE Internet of Things Journal, vol. 5,
no. 3, pp. 2220–2233, 2018, doi:10.1109/JIOT.2018.2828647.

[2] LoRa Alliance, “LoRaWAN Specification,” Accessed on August
16, 2023. [Online]. Available: https://tinyurl.com/lwspec11

[3] ETSI Technical Committee Electromagnetic compatibility and
Radio spectrum Matters (ERM), “Data Transmission Systems
using Wide Band technologies in the 2,4 GHz band,” Technical
Report, ETSI, SRD ETSI TR 103 665, May 2021. [Online].
Available: https://tinyurl.com/etsiism

[4] M. Centenaro et al., “Long-Range Communications in Unli-
censed Bands: The Rising Stars in the IoT and Smart City
Scenarios,” IEEE Wireless Communications, vol. 23, no. 5, pp.
60–67, Oct 2016, doi:10.1109/MWC.2016.7721743.

[5] D. Magrin, M. Centenaro, and L. Vangelista, “Performance Eval-
uation of LoRa Networks in a Smart City Scenario,” in 2017
IEEE International Conference on Communications (ICC), Paris,
France, May 2017, pp. 1–7, doi:10.1109/ICC.2017.7996384.

[6] F. Mason, M. Capuzzo, D. Magrin, F. Chiariotti, A. Zanella, and
M. Zorzi, “Remote Tracking of UAV Swarms via 3D Mobility
Models and LoRaWAN Communications,” IEEE Transactions on
Wireless Communications, vol. 21, no. 5, pp. 2953–2968, 2022,
doi:10.1109/TWC.2021.3117142.

[7] L. Davoli, E. Pagliari, and G. Ferrari, “Hybrid LoRa-
IEEE 802.11s Opportunistic Mesh Networking for
Flexible UAV Swarming,” Drones, vol. 5, no. 2, 2021,
doi:10.3390/drones5020026.

[8] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained
Application Protocol (CoAP),” Internet Requests for
Comments, IETF, RFC 7252, Jun 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7252

[9] R. Morabito, “Virtualization on Internet of Things Edge De-
vices With Container Technologies: A Performance Evalu-
ation,” IEEE Access, vol. 5, pp. 8835–8850, May 2017,
doi:10.1109/ACCESS.2017.2704444.

[10] S. Mihai et al., “Digital Twins: A Survey on Enabling Technolo-
gies, Challenges, Trends and Future Prospects,” IEEE Commu-
nications Surveys & Tutorials, vol. 24, no. 4, pp. 2255–2291,
2022, doi:10.1109/COMST.2022.3208773.

[11] R. Marini et al., “Low-Power Wide-Area Networks: Comparison
of LoRaWAN and NB-IoT Performance,” IEEE Internet of Things
Journal, pp. 1–1, 2022, doi:10.1109/JIOT.2022.3176394.

[12] A. Lombardo et al., “LoRaWAN Versus NB-IoT: Transmission
Performance Analysis Within Critical Environments,” IEEE In-
ternet of Things Journal, vol. 9, no. 2, pp. 1068–1081, 2022,
doi:10.1109/JIOT.2021.3079567.

[13] M. Stusek et al., “LPWAN Coverage Assessment Planning With-
out Explicit Knowledge of Base Station Locations,” IEEE In-
ternet of Things Journal, vol. 9, no. 6, pp. 4031–4050, 2022,
doi:10.1109/JIOT.2021.3102694.

[14] Z. Zhang et al., “ZCNET: Achieving High Capacity in Low Power
Wide Area Networks,” IEEE/ACM Transactions on Networking,
pp. 1–14, 2022, doi:10.1109/TNET.2022.3158482.

[15] K. Staniec and M. Kowal, “LoRa Performance under Variable
Interference and Heavy-Multipath Conditions,” Wireless Com-
munications and Mobile Computing, vol. 2018, pp. 1–9, 2018,
doi:10.1155/2018/6931083.

[16] Q. M. Qadir, “Analysis of the Reliability of LoRa,” IEEE Com-
munications Letters, vol. 25, no. 3, pp. 1037–1040, 2021,
doi:10.1109/LCOMM.2020.3034865.

[17] “LoRa Alliance,” Accessed on August 16, 2023. [Online].
Available: https://lora-alliance.org/

[18] “Semtech Corporation,” Accessed on August 16, 2023. [Online].
Available: https://www.semtech.com/

[19] “European Telecommunications Standards Institute (ETSI),”
Accessed on August 16, 2023. [Online]. Available:
https://www.etsi.org/

[20] Cayenne, “How Cayenne LPP works,” . [Online]. Available:
https://developers.mydevices.com/cayenne/docs/intro/

[21] J. Jimenez, M. Koster, and H. Tschofenig, “IPSO Smart
Objects,” in IoT Semantic Interoperability Workshop
2016, San Jose, California, Mar 2016, pp. 1–
7. [Online]. Available: https://www.iab.org/wp-content/IAB-
uploads/2016/03/ipso-paper.pdf

[22] A. Cilfone, L. Davoli, and G. Ferrari, “Virtualizing Lo-
RaWAN Nodes: a CoAP-based Approach,” in 2019 Interna-
tional Symposium on Advanced Electrical and Communica-
tion Technologies (ISAECT), Rome, Italy, Nov 2019, pp. 1–6,
doi:10.1109/ISAECT47714.2019.9069691.

[23] T. Bray, “The JavaScript Object Notation (JSON) Data
Interchange Format,” Internet Requests for Comments,
IETF, RFC 8259, Dec 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8259

[24] World Wide Web Consortium (W3C), “Extensible Markup
Language (XML) 1.0,” Accessed on August 16, 2023. [Online].
Available: https://www.w3.org/TR/xml/

[25] M. Nottingham, “Web Linking,” Internet Requests for
Comments, IETF, RFC 8288, Oct 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8288

[26] Z. Shelby, “Constrained RESTful Environments (CoRE) Link
Format,” Internet Requests for Comments, IETF, RFC 6690, Aug
2012. [Online]. Available: https://tools.ietf.org/html/rfc6690

[27] E. Kristiani et al., “The Implementation of an Edge Comput-
ing Architecture with LoRaWAN for Air Quality Monitoring
Applications,” in Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineer-
ing. Springer International Publishing, 2020, pp. 210–219,
doi:10.1007/978-3-030-52988-8_19.

[28] G. Dandachi and Y. Hadjadj-Aoul, “A Frequency-Based Intel-
ligent Slicing in LoRaWAN with Admission Control Aspects,”
in Proceedings of the International Conference on Modeling
Analysis and Simulation of Wireless and Mobile Systems on
International Conference on Modeling Analysis and Simulation
of Wireless and Mobile Systems, Montreal, QC, Canada, 2022,
doi:10.1145/3551659.3559055.

[29] R. Yasmin et al., “On the integration of lorawan with the
5g test network,” in 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Commu-
nications (PIMRC), Montreal, QC, Canada, 2017, pp. 1–6,
doi:10.1109/PIMRC.2017.8292557.

[30] J. Navarro-Ortiz et al., “Integration of LoRaWAN and
4G/5G for the Industrial Internet of Things,” IEEE Com-
munications Magazine, vol. 56, no. 2, pp. 60–67, 2018,
doi:10.1109/MCOM.2018.1700625.

[31] F. Flammini et al., “Virtualization Technology for LoRaWAN
Roaming Simulation in Smart Cities,” in Studies in Computa-

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, NOVEMBER 2023 17

tional Intelligence. Springer International Publishing, 2021,
pp. 251–265, doi:10.1007/978-3-030-72065-0_14.

[32] G. Tanganelli, C. Vallati, and E. Mingozzi, “Edge-Centric Dis-
tributed Discovery and Access in the Internet of Things,” IEEE
Internet of Things Journal, vol. 5, no. 1, pp. 425–438, 2018,
doi:10.1109/JIOT.2017.2767381.

[33] S. Cirani et al., “A scalable and self-configuring architecture
for service discovery in the internet of things,” IEEE Inter-
net of Things Journal, vol. 1, no. 5, pp. 508–521, Oct 2014,
doi:10.1109/JIOT.2014.2358296.

[34] L. Rodrigues, J. Guerreiro, and N. Correia, “Resource design
in federated sensor networks using RELOAD/CoAP overlay ar-
chitectures,” Computer Communications, vol. 179, pp. 11–21,
2021, doi:10.1016/j.comcom.2021.07.019.

[35] L. Belli et al., “A Novel Smart Object-Driven UI Genera-
tion Approach for Mobile Devices in the Internet of Things,”
in Proceedings of the 1st International Workshop on Expe-
riences with the Design and Implementation of Smart Ob-
jects, ser. SmartObjects ’15, Paris, France, 2015, pp. 1––6,
doi:10.1145/2797044.2797046.

[36] OASIS Open, “MQ Telemetry Transport (MQTT) Specifications,”
Accessed on August 16, 2023. [Online]. Available:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

[37] “Docker,” Accessed on August 16, 2023. [Online]. Available:
https://www.docker.com/

[38] M. D. Day, C. E. Perkins, J. Veizades, and E. Guttman,
“Service Location Protocol, Version 2,” Internet Requests for
Comments, IETF, RFC 2608, Jun 1999. [Online]. Available:
https://tools.ietf.org/html/rfc2608

[39] Zero Configuration Networking (Zeroconf),
“http://www.zeroconf.org/,” 1999.

[40] S. Cheshire and M. Krochmal, “Multicast DNS,” Internet
Requests for Comments, IETF, RFC 6762, Feb 2013. [Online].
Available: https://tools.ietf.org/html/rfc6762

[41] ——, “DNS-Based Service Discovery,” Internet Requests for
Comments, IETF, RFC 6763, Feb 2013. [Online]. Available:
https://tools.ietf.org/html/rfc6763

[42] I. Fette and A. Melnikov, “The WebSocket Protocol,” Internet
Requests for Comments, IETF, RFC 6455, Dec 2011. [Online].
Available: https://tools.ietf.org/html/rfc6455

[43] L. Davoli et al., “Integration of Wi-Fi mobile nodes in a Web
of Things Testbed,” ICT Express, vol. 2, no. 3, pp. 95–99, 2016,
special Issue on ICT Convergence in the Internet of Things (IoT).

[44] Eclipse Foundation, “Eclipse Californium (Cf) CoAP
Framework,” Accessed on August 16, 2023. [Online]. Available:
https://eclipse.dev/californium/

[45] ——, “MQTT Paho,” Accessed on August 16, 2023. [Online].
Available: https://www.eclipse.org/paho/clients/java/

[46] G. Fu, Y. Zhang, and G. Yu, “A Fair Comparison of Message
Queuing Systems,” IEEE Access, vol. 9, pp. 421–432, 2021,
doi:10.1109/ACCESS.2020.3046503.

[47] A. Stratikopoulos et al., “Transparent Acceleration of Java-
Based Deep Learning Engines,” in Proceedings of the 17th
International Conference on Managed Programming Languages
and Runtimes, ser. MPLR ’20, Virtual, UK, 2020, pp. 73–79,
doi:10.1145/3426182.3426188.

[48] STMicroelectronics, “STEVAL-STRKT01 LoRa IoT Tracker,”
Accessed on August 16, 2023. [Online]. Available:
https://www.st.com/en/evaluation-tools/steval-strkt01.html

[49] Petr Gotthard, “Compact LoRaWAN Network Server for private
LoRaWAN networks,” Accessed on August 16, 2023. [Online].
Available: https://github.com/gotthardp/lorawan-server

[50] The Things Industries, “The Things Network (TTN),”
Accessed on August 16, 2023. [Online]. Available:
https://www.thethingsnetwork.org/

[51] E. Guttman and N. Brownlee, “Expectations for Computer
Security Incident Response,” Internet Requests for

Comments, IETF, RFC 2350, Jun 1998. [Online]. Available:
https://tools.ietf.org/html/rfc2350

[52] M. Eldefrawy et al., “Formal Security Analysis of Lo-
RaWAN,” Computer Networks, vol. 148, pp. 328–339, 2019,
doi:10.1016/j.comnet.2018.11.017.

[53] R. Kloibhofer, E. Kristen, and L. Davoli, “LoRaWAN with HSM
as a Security Improvement for Agriculture Applications,” in
Computer Safety, Reliability, and Security. SAFECOMP 2020
Workshops, A. Casimiro, F. Ortmeier, E. Schoitsch, F. Bitsch,
and P. Ferreira, Eds., 2020, pp. 176–188, doi:10.1007/978-3-030-
55583-2_13.

[54] A. Martin et al., “Docker ecosystem – Vulnerability Analy-
sis,” Computer Communications, vol. 122, pp. 30–43, 2018,
doi:10.1016/j.comcom.2018.03.011.

[55] I. Butun, P. Österberg, and H. Song, “Security of the Internet of
Things: Vulnerabilities, Attacks, and Countermeasures,” IEEE
Communications Surveys & Tutorials, vol. 22, no. 1, pp. 616–
644, 2020, doi:10.1109/COMST.2019.2953364.

Antonio Cilfone received his M.Sc. in Commu-
nication Engineering and his Ph.D. in Informa-
tion Technologies from the University of Parma,
Parma, Italy, in 2016 and 2019, respectively. He
has been member of the Internet of Things (IoT)
Lab at the Department of Engineering and Ar-
chitecture of the University of Parma from 2016
until 2020, working on heterogeneous network-
ing, signal processing, and smart systems top-
ics. He is currently working as R&D software

engineer at Tesmec Automation s.r.l., Italy.

Luca Davoli (GS’15, M’17) is a non-tenured
assistant professor at the Internet of Things
(IoT) Laboratory, Department of Engineering
and Architecture, University of Parma, Parma,
Italy. He received his Dr. Ing. degree in Com-
puter Engineering and his Ph.D. in Information
Technologies at the Department of Information
Engineering of the same university, in 2013 and
2017, respectively. His research interests focus
on IoT, Pervasive Computing, Big Stream and

Software-Defined Networking.

Gianluigi Ferrari (S’96–M’98–SM’12) received
the Laurea (summa cum laude) and Ph.D. de-
grees in electrical engineering from the Univer-
sity of Parma, Parma, Italy, in 1998 and 2002,
respectively. Since 2002, he has been with the
University of Parma, where he is currently a full
professor of telecommunications and also the
coordinator of the Internet of Things (IoT) Lab-
oratory, Department of Engineering and Archi-
tecture. His current research interests include

signal processing, advanced communication and networking, and IoT
and smart systems.

