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Abstract—Given the massive deployment of Internet of Things
(IoT) applications over the last decade, the need for gateways able
to efficiently route information flows across multiple heteroge-
neous networks has emerged, bringing new challenges. Therefore,
the design and implementation of IoT gateways is crucial. In
this paper, with reference to the architecture of a prototypical
Multi-Interface Gateway (MIG) (based on Commercial-Off-The-
Shelf, COTS, devices), we evaluate its performance: (i) analyti-
cally, through an innovative Markov chain-based model; (ii) by
simulation, with a Python simulator; (iii) experimentally, through
the (starting) COTS device-based prototype. In detail, the MIG is
equipped with heterogeneous wireless communication interfaces
(namely LoRaWAN, BLE, cellular 4G Cat. 4, and IEEE 802.11
Wi-Fi 2.4 GHz) and is applicable to multiple IoT scenarios. The
obtained simulation and experimental results show the validity
of the proposed analytical model. Further improvements of the
proposed framework are eventually discussed.

Index Terms—Internet of Things, Multi-Interface Gateway,
Markov Chain, Analytical Modeling, Performance Evaluation,
LoRaWAN, BLE, Wi-Fi, Cellular.

I. INTRODUCTION

MONG the technologies and paradigms which have

recently changed the way of thinking about the Internet,
a key role is played by the Internet of Things (IoT), which
entails the development of a multitude of nodes equipped with
sensors/actuators and different (often wireless) communication
interfaces. To this regard, thanks to the large number of
contexts and scenarios which IoT can be applied to (e.g.,
smart cities, Industry 4.0, smart farming), IoT entities are
often organized (from a network point of view) as systems
of systems.

In general, a reference IoT scenario encompasses hetero-
geneous communication protocols from short-range (usually
with high data transmission rate) to long-range (typically with
low data transmission rate) [1], as shown in Fig. 1. Due to this
heterogeneity and the need to “federate” IoT networks, one of
the main challenges is to allow a transparent (from a high
level point of view) interaction between different networks.
Therefore, a key element is a gateway, whose features and
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Fig. 1: Communication protocols of interest for heterogeneous
IoT scenarios.

capabilities play a crucial role in enabling IoT applications by
efficiently routing data.

Gateways are typically multi-layered (with reference to the
ISO/OSTI and TCP-IP layered protocol stacks) network entities
which support: intelligent information flows’ routing; data
processing; and queuing mechanisms (this is crucial, as we
will see, in the presence of heterogeneous communication
interfaces). On the other hand, heterogeneous networks, with
a large number of nodes collecting data (e.g., through sen-
sors) from the surrounding environment, exploit proper data
processing techniques to extract relevant (non-redundant) in-
formation and made its transfer compatible with low data-rate
protocols (e.g., Long Range Wide Area Network, LoRaWAN).

In this paper, we first present the architecture of a
Commercial-Off-The-Shelf (COTS) device-based prototypical
implementation of an enhanced scalable and modular Multi-
Interface Gateway (MIG) with four heterogeneous commu-
nication interfaces, namely: IEEE 802.11 (2.4 GHz) Wi-Fi;
Bluetooth Low Energy (BLE); LoRaWAN; and cellular 4G
(Cat. 4). Then, in order to accurately predict the experimen-
tal performance of our COTS device-based MIG in various
scenarios, we derive a novel Markov chain-based queuing
model of the MIG. Various input distributions for the packet
inter-arrival times are considered, in order to evaluate their
impact on the system performance. Finally, we develop a
Python-based software simulator of the MIG in order to verify
the analytical performance predicted by our Markov chain-
based queuing model, thus paving the way to a comparison
between analytical and simulation results, as well as to a
deeper analysis of the limitations of the used communication
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protocols. Unlike classical approaches, which move from
theoretical modeling to experimental validation, in this study
we move from a COTS device-based MIG (with a specific
architecture) to its analytical and simulation models.

Eventually, the performance of the MIG prototype, equipped
with pairwise bidirectional smart data routing mechanisms
between the four aforementioned communication interfaces
(namely: Wi-Fi, BLE, 4G, and LoRaWAN), is experimentally
evaluated and compared with the analytical and simulation per-
formances. The proposed MIG architecture supports internal
data pre-processing to make high throughput information flows
(from the BLE, Wi-Fi, and cellular interfaces) compatible
with the constrained transmission capabilities of LoRaWAN.
In particular, proper parsing, adaptation, and conversion rules
are used to minimize resource consumption, thus guaranteeing
the highest possible (sustainable) throughput. The modular
design of the MIG allows (i) to make use of constrained
protocols (namely, LoORaWAN) feasible and (ii) to introduce
predictive processing mechanisms (e.g., based on Artificial
Intelligence, Al, techniques) to be applied to the data flows
(e.g., to optimize resource utilization).

The main contributions of this work can be summarized as
follows.

o« We present the architecture of a COTS device-based
prototypical implementation of a modular MIG.

o We evaluate the experimental performance of the MIG
with heterogeneous communication interfaces, namely:
IEEE 802.11 Wi-Fi, BLE, LoRaWAN, and cellular 4G.

e We derive a novel Markov chain-based queuing model
of the MIG, to analytically estimate its performance as a
function of the input traffic data distribution.

o We consider different input distributions for the packet
inter-arrival times, in order to evaluate their impacts on
resource utilization of the MIG.

o We develop a Python simulator to verify the analytical
performance predicted by the proposed Markov chain-
based queuing model.

o We compare analytical, simulation, and experimental per-
formance results in the presence of pairwise bidirectional
smart data routing mechanisms between the communica-
tion interfaces.

The rest of the paper is organized as follows. In Section II,
we overview existing solutions and comment on related re-
search works available in the literature. Section III introduces
and characterizes the internal MIG architecture, with reference
to a specific prototypical implementation. In Section IV, we
derive a Markov chain-based queuing model to describe the
behavior of the MIG. In Section V, we evaluate the perfor-
mance predicted by the analytical queuing model (in the pres-
ence of a representative input data distribution) and compare
it with that of a Python-based simulator. In Section VI, we
rely on the validated analytical model to analyze the impact
of the packet inter-arrival time distribution. In Section VII,
this comparison is extended toward experimental performance
evaluation of the MIG prototype. Section VIII is dedicated
to discussing possible improvements. Finally, in Section IX
conclusions are drawn.

II. RELATED WORKS

The heterogeneity of IoT scenarios and applications requires
to carefully consider communication aspects, thus looking
for potential trade-offs. The communication protocols shown
in Fig. 1 are strongly heterogeneous in terms of data rate
and applicability. In detail, widely adopted wireless com-
munication protocols are: BLE for short-range communica-
tions [2]; IEEE 802.11 (Wi-Fi) and ZigBee [3] for medium-
range communications; and NarrowBand-IoT (NB-IoT), cel-
lular (e.g., 4G LTE), LoRaWAN, and Sigfox [4] for long-
range communications. In order to make these protocols inter-
operable and manageable by a multi-interface node, their
characteristics have to be carefully taken into account [5].
Typically, two entities support interoperability: bridges [6]
and gateways [7]. Gateways should be preferred, with respect
to bridges, in IoT scenarios, as they support intelligent data
routing, queuing policies, and data analysis mechanisms for
heterogeneous (in terms of resources and constraints) commu-
nication interfaces [8]. Hence, the design and deployment of
intelligent gateways plays a crucial role, especially in the case
of large heterogeneous networks requiring “intelligent” data
pre-processing at the edge.

Even though there are different gateways available on the
market (see, for example, [9]), they typically present relevant
drawbacks, such as: high costs; limited communication inter-
faces available on the devices; and, most of all, “closed source”
nature. This “closeness” prevents: the introduction of new
routing/communication/processing features; the connection of
new communication interfaces; and the implementation of
complex network scenarios—e.g., with intelligent routing poli-
cies based on traffic offloading, as well as enhanced decision
mechanisms (e.g., through the adoption of traffic engineering
paradigms [10,11]). Therefore, the design and implementation
of modular and open gateway architectures, like the one
proposed in this work, may lead to a faster deployment of
new loT applications based, for example, on the integration
of heterogeneous Wireless Sensor Networks (WSNs).

Focusing on the analytical characterization of a gateway,
in [12] a hidden Markov model-based approach for latency-
aware and energy-efficient computation offloading in fog
computing-like scenarios is proposed. This analytical model is
exploited to find the best possible candidate layer which appli-
cation modules can be executed at. An interesting optimization
tool for constrained IoT applications is then proposed. Markov
queuing models have also been adopted in [13,14], looking for
a trade-off between energy consumption and latency in task
assignment in next-generation systems, as well as in [15]-[18].

The research works mentioned in the previous paragraph
focus on the use of Markov chain-based models for the charac-
terization and optimization of a few network parameters only
for specific IoT system aspects (e.g., energy consumption).
Unlike our work, the above works are not applicable to a
MIG supporting heterogeneous communication protocols and
do not allow to derive a corresponding Markov chain-based
model. More in detail, most of the above literature works
focus on modeling a single communication protocol according
to its specific (low-level) protocol rules. For example, the



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, NOVEMBER 2023

analytical model of the LoRaWAN protocol proposed in [19]
focuses on LoRaWAN UpLink (UL) latency, collision rate,
and throughput, assuming that the packet inter-arrival time has
an exponential distribution. An extended model is proposed
in [20], where both UL and DownLink (DL) transmissions,
together with other relevant features of the LoRaWAN pro-
tocol, are taken into account. Unlike [19,20], the goal of
our work is not the investigation of the behavior of each
protocol per se, i.e., without considering the others. Rather,
we want to model the behavior of a communication protocol
and investigate its limits depending on the constraints imposed
by its interaction with other protocols, e.g., when the input
information flow comes from another communication interface
the MIG is equipped with.

As for the LoRaWAN protocol case, most of the BLE
scientific literature models the BLE behavior considering low-
layers’ protocol details. In [21], an analytical model of BLE
advertising channels is proposed for several applications (such
as localization or data advertisement in IoT use cases).

Finally, in [22] a high-level characterization of a gateway,
to be used for several IoT applications, is proposed. In detail,
the authors highlight how the interactions among multiple
devices can be modeled in large scale applications, thus
optimizing the deployment of gateways to guarantee efficient
and adaptive communications in several scenarios. However,
in [22] no internal modeling of such gateways is proposed,
focusing more on the high layer interactions among multiple
gateways, rather than internal packet management between
heterogeneous protocols, as presented and discussed in our
work.

III. MIG ARCHITECTURE

The prototypical IoT-oriented MIG implementation pro-
posed in this paper is based on a Raspberry Pi 4 (RPi4) Single
Board Computer (SBC), equipped with an additional Dragino
LoRaWAN hat [23] and an external 4G LTE Cat. 4-enabled
Huawei E3372 USB dongle connected to one USB port of
the RPi4. Owing to this configuration, the MIG may operate
with the following connectivities: BLE and Wi-Fi (through
the communication interfaces natively provided by the RPi);
LoRaWAN (through the external Dragino hat); and cellular
(through the Huawei modem). In Fig. 2, we show: (i) the
COTS device-based MIG prototype and (b) its corresponding
internal architecture. From a software point of view, the MIG
architecture is based on two high-layer types of modules,
namely: (i) a dedicated software routine for each available
communication interface, and (ii) an internal routing module,
denoted as Smart Data Broker (SDB), that, jointly operating
with an internal Message Queue Telemetry Transport (MQTT)
broker, is in charge of handling multiple MQTT topics and
is used for temporary internal traffic packets’ queuing and
management purposes. We now describe in more detail each
block.

The main role of the software routine associated with each
communication interface equipping the MIG is: (i) to properly
handle the tasks which may be required by the corresponding
communication protocol (e.g., packet processing, payload con-
straints’ validation, transmission policies’ adoption, services’
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Fig. 2: MIG: (a) COTS device-based prototype and (b) high-
layer architecture.
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execution, UL and DL operation handling, etc.) and (ii) to
optimize, convert, and forward data (e.g., coming from on-field
end nodes connected to the MIG) toward the right interface-
specific MQTT topic.

In the following, we consider incoming packets (also de-
noted as DL packets, from end nodes toward the MIG) only
through BLE and Wi-Fi interfaces. This is motivated by the
fact that the LoRaWAN interface is practically used only for
UL communications' and the same applies also to the cellular
interface (as IoT nodes may rarely be equipped with a cellular
interface to communicate with the MIG). In other words, the
envisioned behavior of the MIG is that of collecting data from
nearby Wi-Fi or BLE IoT nodes (DL data traffic) and forward
this traffic (properly processed) across LoRaWAN or cellular
networks (UL data traffic).

Suppose that the data collected from on-field end nodes have
the illustrative structure shown in Fig. 3 (at the top). Once
received by the MIG, these packets will then be processed by
the proper DL interface’ handler. The selected handler then
“appends” a header field, denoted as IDrourg, specifying
the routing rule which should be applied by the SDB routing
system (e.g., forward to the LoRaWAN interface). Further-
more, in the case of a packet coming from Wi-Fi or BLE
nodes (as discussed in the previous paragraph), this packet is
extended to include the following fields: (i) the source node’s
MAC address SRC\ac and (i) a separator field. The final
packet structure will thus possess a general form with a header
H and a payload PKT.

Looking at the internal routing mechanism, the SDB relies
on a standard MQTT broker handling different MQTT topics,
each of them managed by a proper UL/DL handler in charge
of processing input packets and forwarding them to the right

IClass ¢ LoRaWAN nodes [24] can also receive DL traffic from the
LoRaWAN’s Application Server (AS) through LoRaWAN gateways, but they
are typically not used.
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Fig. 3: Data packets from the different communication inter-
faces adopted in the proposed MIG.

TABLE I: Routing rules available in the proposed IoT MIG.

Field Value Routing Destination
MAC Address | Specific MAC address of the BLE device
IP Address Specific IP address of the Wi-Fi device
0 LoRaWAN communication interface
1 Wi-Fi server’s default IP address
2 BLE server’s default MAC address
3 LoRaWAN communication interface and Wi-Fi
server’s default IP address
4 LoRaWAN communication interface and BLE
server’s default MAC address
5 Wi-Fi server’s default IP address and BLE server’s
default MAC address
6 All available communication interfaces, on their de-
fault server IP addresses
7 Server reachable through the Cellular Network

output interface’s UL queue according to a First-In-First-Out
(FIFO) policy. Then, the interfaces’ servers, being subscribers
to the MQTT UL topics of their corresponding communication
interfaces, (i) are notified by the SDB with the updated Data
Transfer Units (DTUs), leading to aggregated packets, (ii)
perform the required actions on the data, and (iii) execute the
final UL operation, forwarding data to the right target device
through the proper interface. To this end, it should be noted
that, from an operational point of view, the MIG creates a
new thread each time a message is notified via the proper UL
MQTT topics. In the proposed implementation, the data are
temporarily stored inside the RPi4’s RAM, thus limiting the
processing time and increasing the overall performance.

For the sake of completeness, it should be highlighted
that each software entity managing its own communication
interface also encapsulates (with a proper parsing technique)
the retrieved data into DTUs, to make them suitable for
constrained protocols. More in detail, IP and MAC addresses
are properly “compressed” (to minimize occupation): an IP
address is encoded as a single integer and a MAC address
is translated into its corresponding HEX value. This approach
is especially useful to minimize the dimension of LoRaWAN
messages’ payloads. Finally, depending on the routing identi-
fier, the resulting DTU is sent to the proper communication
interface. An illustrative example of routing rules’ defined
internally in the proposed MIG is shown in Table I.

2As a future research direction, additional strategies for injecting routing
rules from external entities (e.g., from fog/edge/cloud computing-like systems)
could be derived. As mentioned before, only interactions with Wi-Fi and BLE
nodes are considered.
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proposed MIG.

The proposed DTU structure, shown in Fig. 4, allows
processed data, to be transmitted by BLE and Wi-Fi com-
munication interfaces, to be inserted in an output packet with
a payload composed by N aggregated payloads {PKT;} Y,
separated by the separator field ““|,” each one in turn composed
by the identifier of the target (either IP or MAC address),
separated from the payload by a separator field “@.” At the
opposite, in the case of data to be transmitted by the Lo-
RaWAN interface, the resulting data packet will be a sequence
of processed packets separated by the separator field “|.”
To this end, in order to further optimize the use of such
constrained networks, intelligent (e.g., Al-based) data pre-
processing mechanisms could be used, as will be discussed
in Section VIII.

In order to better highlight the relation between on-field
end nodes and the proposed IoT MIG, in Fig. 5 the data flows
inside the proposed architecture are shown. The introduction
of new communication interfaces would be possible owing to
the internal modular architecture of the MIG. In fact, only the
specific software routines needed for a new communication
interface should be written, abiding by their own constraints
and rules, while MQTT broker and SDB would remain un-
changed. Moreover, the adoption of publish/subscribe-based
routing policies allows the MIG to accept incoming traffic
flows even from additional data sources and, possibly, with
different input data packets’ format—this is not considered
in the current paper but represents an interesting research
direction. We also remark that routing policies’ management
could be outsourced and (logically) concentrated on external
controllers (e.g., in the cloud) to enhance the infrastructure
management—this is out of the scope of this paper and is left
as a future development.

Looking at the operational conditions, since the interaction
among MQTT topics requires a non-negligible processing
time, it can be assumed that the proposed MIG is suitable
for non-real-time applications, where data are collected from
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Fig. 6: Smart farming scenario with RPi-based MIG and
several ESP32-based Wi-Fi and BLE sensing nodes.

different sources (e.g., for environmental monitoring, as well
as in non-critical Industrial IoT, IIoT, domains) within a proper
amount of time (e.g., at least 1 s). The system performance
could be improved by reducing the internal processing time:
this represents an interesting research direction.

As anticipated in Section I, the proposed MIG is applicable
to several heterogeneous IoT scenarios where data may be
collected from different data sources deployed in the environ-
ment of interest (e.g., environmental data sensing and remote
monitoring), especially in those contexts in which commu-
nication protocols may be constrained and/or communication
conditions may be challenging.

e« A first representative application scenario is smart
farming, in which several IoT sensing/actuating nodes
(e.g., based on ESP32 System-on-Chip (SoC) [25] and
equipped with Wi-Fi and BLE connectivity, as well as
several hardware sensors, such as DHT11 [26]) with
short-range communication capabilities are deployed over
a large area far away from an Internet access point.
The collected data need to reach high-layer processing
entities (e.g., cloud platforms, as well as end users, such
as farmers) interested on these data, following a Farm-as-
a-Service (FaaS) approach [27]. Therefore, the use of a
MIG, similar to the prototypical implementation proposed
in Section III and based on a RPi 4 with additional
LoRaWAN and cellular communication interfaces, will
be essential to support information collection from the
field and forwarding to the Internet [28], as shown in
Fig. 6.

e A second scenario benefiting from the adoption of the
proposed loT-oriented MIG is Unmanned Aerial Vehi-
cle (UAV)-based remote monitoring. As an example, in
smart city a large number of short-range WSNs might
be deployed to collect data of interest, possibly pre-
processing them before forwarding them to high-layer
consumers. Then, a UAV equipped with a Wi-Fi-, BLE-
and LoRaWAN-enabled MIG can, first, gather data (either
using short-range or long-range communication proto-
cols) by flying over/near these WSNs and, then, forward
the collected data to an Internet-connected node using a
long-range or cellular communication protocol, as shown
in Fig. 7.

o A third reference scenario, in the more general context
of smart cities, involves Vehicle-to-Everything (V2X)
communications [29]. In this case, similarly to scenarios
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the proposed MIG.
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where UAVs should interact with each other, on the
ground (i.e., along roads and highways) there may be
the need to collect data (e.g., for monitoring purposes)
directly from the vehicle and the driver by relying
on the MIG. This would involve (i) the interaction
of the MIG with the vehicle’s On Board Unit (OBU)
for diagnostic information retrieval, through wireless or
wired communication interfaces, as well as (ii) data
collection at the MIG from additional equipment and
devices installed inside the vehicle’s cabin (e.g., driver’s
smartphone and wearables for monitoring his/her stress
levels [30]), through wireless communication interfaces.
After preliminary processing performed in the MIG inside
the vehicle, the extracted information may be sent to
the infrastructure (e.g., via LoORaWAN, provided that the
obtained data can fit its payload constraints) as well as to
vehicles in the neighborhood (e.g., via vehicular Wi-Fi
or BLE, for warning alerting), possibly exploiting Ad-
vanced Driver Assistance Systems (ADAS) and targeting
cooperative communications which urban and sub-urban
mobility can benefit from.

Finally, as a general remark, the proposed IoT MIG allows
to exploit additional heterogeneous communication interfaces
as backup communication interfaces in critical situations or
when the communication interface under use fails [31]. This
can be the case, as shown in Fig. 8, in contexts involving
drones (e.g., for UAV-to-Ground communications and vice-
versa), where multiple data streams could be exchanged be-
tween flying UAVs and one (or more) ground control centers,
as well as among the UAV and its human pilot (to ensure the
correct execution of the flight operations).

All the illustrative applications outlined above require the
use of heterogeneous communication protocols and the MIG
plays a key role in enabling interactions with each other.
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IV. ANALYTICAL QUEUING MODEL

In order to investigate how the proposed MIG harnesses
communication heterogeneity by properly handling traffic
data, in this section we derive a novel Markov chain-based
queuing model for the MIG. In Subsection IV-A, the MIG
is modeled through an embedded Markov chain with states
corresponding to the communication interfaces: the chain is
in one state if the corresponding interface is transmitting
or receiving. We assume that one interface at a time can
be active.®> The Markov chain transition matrix is associated
with input and output flows across different interfaces. In
Subsection IV-B, each communication interface’s UL queue
will be modeled as a G/G/1 queue.

We remark that our Markov chain-based model does not
take into account the physical transmission channels associated
with the communication interfaces equipping the MIG. In fact,
our focus is on internal information flow management and
we will assume that the wireless communication channels are
error-free. An interesting extension encompasses the analysis
of the impact of channel status on system performance (e.g.,
because of retransmissions). The proposed Markov chain
model provides a simple, yet effective, way to predict the
performance of the MIG, taking also into account possible
limitations of a real system deployment (such as the internal
processing time, due to the processing capabilities of the
embedded SBC—a RPi, as indicated at the beginning of
Section III).

A. Embedded Markov Chain

The flows of the DTUs (mentioned in Section III) inside
the MIG can be characterized through an embedded Markov
chain with states corresponding to the MIG’s communication
interfaces. The transition probability associated with a link
between two states depends, in general, on the flow from the
input (DL) interface (initial state) to the output (UL) interface
(final state). A high-level overview of the state transition
diagram is shown in Fig. 9, where )\%]\?L) , )\g()Lz and 1(3Dil:3
represent the input arrival rates (dimension: [DTU/s]) from
the Wi-Fi, cellular and BLE interfaces, respectively, while

Ezlvj::)t , gf:])t), S(J()L)t) )\gjfu)” represent the departure
rates from Wi-Fi, cellular (dimenSion: [DTU/s] for both),
LoRaWAN and BLE (dimension: [pkt/s] for both) interfaces,
respectively.* Moreover, Sw, Sg, Sc and Sy, represent the
service times (dimension: [s]) of the servers associated with
the corresponding interfaces, respectively.

The transition matrix of the Markov chain shown in Fig. 9
can be expressed as follows:

Pyw Pwc Pwp PwiL
Pcw Pcc FPecp Pouo (D
Psw Psc P FPBL

P=[P;] =

3The extension to the case with multiple active interfaces (e.g., one
receiving and one transmitting) is currently under investigation.

4We remark that no arrival flow is considered in the LoORaWAN state (i.e.,

g?_L: = 0 pkt/s), as the LoRaWAN interface is assumed to support only UL
communications (no Class C IoT node is considered). The fact that AS(JLl)
and /\gL)h) are expressed in pkt/s, rather than DTU/s, will be clarified in the

remainder of the section.

Fig. 9: State transition diagram of the proposed IoT MIG.

where P; ;, 1 € {W,C,B,L}, j € {W,B, C} represents the
transition probability from state ¢ to state j or, in other words,
the probability that an information flow has to be transferred
from the i-th interface (receiving interface) to the j-th interface
(transmitting interface).

Given that in our Markov chain-based queuing model the
transition probabilities depend on (i) the internal (inside the
MIG) routing rules and (ii) the input arrival rates at the MIG’s
communication interfaces (DL flows), the corresponding ar-
rival rates at the output queues at the communication interfaces
(UL flows) can be expressed as follows:

Mo =AY Py 4 A8 Por + MW7) - P
(UL) _ y(DL) | (DL)
ABgny = ACam T0B T AW, - Pw.s (2)
Aoy = Ay Poe + W - P
AWy = Ay Poaw + 050 - Po.w

We further remark that, while an output queue is considered
at each MIG interface (for transmissions out of the MIG, i.e.,
UL transmissions), no queues are associated with the links
between pairs of states of the state diagram (i.e., between
pairs of MIG interfaces), since: (i) packets received from end
nodes are immediately processed (no need for input queues
at the communication interfaces); and (ii) internal transitions
are managed at software level and the corresponding latencies
can thus be neglected in the Markov chain-based model (the
internal latency is negligible). Therefore, we focus on the
output queues associated with the MIG interfaces.

We finally assume that the internal routing between the dif-
ferent MIG interfaces considers direct information flows from
one interface to another interface (e.g., an information flow
entering from the BLE interface is forwarded to the LoRaWAN
interface). This /-in-to-1-out assumption on internal routing is
meaningful (and non-restrictive) for the following reasons: (i)
it reflects a realistic behavior of the MIG for IoT applications,
as discussed in Section III; (ii) it keeps the internal Markov
chain-based model tractable. The extension to the combination
of multiple input information flows (e.g., BLE and Wi-Fi)
into a single output information flow (e.g., LoORaWAN) is an
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interesting research extension. Taking into account Eq. (2), the
1-in-to-1-out assumption can be formalized with the following
constraints:

Pg1, P, Pwi, Po, PwB,

Pgc, Pw,c, Pc,w, Psw € {0,1}
Ps1,+ FPor +Pwr =1
Pecp+Pywp=1
Pesc+Pyc=1
Pocw+Pew=1.

3)

For example, assuming that an information flow from the BLE
interface has to be forwarded to the LoRaWAN interface, in
Eq. (2) one should set Pgy, = 1, Pc1, = 0, and Pw 1, = 0,
obtaining:

Mo =My Po #2000 Por A - P
NG
= )‘B@n) . “)

Finally, we remark that, even if the proposed MIG’s ana-
lytical model does not take into account network congestion
(especially at transport layer), the extension of the analytical
model to encompass the presence of congestion represents
an interesting research direction. For example, a preliminary
strategy may require to dynamically update the transition
probabilities, with a direct impact on the routing rules associ-
ated with each communication interface, taking into account
the load at the interfaces’ servers. As an example, if the
LoRaWAN interface server is operating at a value closer to its
stability threshold (i.e., pr, — 17), the associated LoRaWAN
in-flow transition probabilities (namely: Pgp1,, Pc,r, Pw,L)
can be reduced, while the in-flow transition probabilities of
another interface (e.g., Wi-Fi, namely: Py w and Pc w) can
be increased, thus lowering /\éUiI:) to reduce the load at the
LoRaWAN server and, therefore, congestion. Another possible
approach to handle network congestion could be based on
removing the I-in-to-1-out assumption in Eq. (3): part of
the information flow entering into a congested interface may
be deflected to another interface available to reach the final
intended destination. In general, there may be other approaches
to handle congestion: however, this analysis goes beyond the
scope of the current work and will be the subject of our future
research.

B. G/G/I Queues for Uplink Interfaces

In the proposed Markov chain model, we assume that each
interface UL queue (outgoing traffic) is associated with a
G/G/1 queue. This is an analytical queuing model of the
MQTT-based system described, from an architectural point of
view, in Section III. The G/G/1 queuing model has been cho-
sen due to the generality of the distributions associated with
arrival processes and service times. In fact, in the proposed
MIG, for each communication interface: the inter-arrival time
of DTUs has a general distribution with known parameters;
and the service time has a distribution which depends on
parameters related to the size of the packet being processed.

In order to accurately model the behavior of the G/G/1
queue at each UL interface, two remarks are expedient: (i)

DTU Aggregator G/G/1 Queue
A A
)\S-(JL;) r \ AAGG r h \ AS(JL'.))
[DTUIs] [PKT/s] — [PKT/s]
HAGG MUSERVICE

Fig. 10: G/G/1 LoRaWAN queue as a concatenation of DTU
Aggregator (modeled as a G/D/1 queue) and Packet Transmit-
ter (modeled as a G/G/1 queue).

Wi-Fi and cellular G/G/1 queues transmit each DTU with-
out performing any batch operation (on groups of DTUs),
whereas (ii)) BLE and LoRaWAN G/G/1 queues perform DTUs
batching to optimize the throughput. In other words, in BLE
and LoRaWAN cases the output packet size is maximized by
concatenating together, in a single payload, as many DTUs as
allowed by the standards, taking into account the operational
settings.’

1) LoRaWAN G/G/1 Queue: LoRaWAN is the most con-
strained communication interface in the MIG. Its correspond-
ing G/G/1 queue, shown in Fig. 10, can be decomposed into
the concatenation of two sub-queues: (a) a DTU Aggrega-
tor, receiving DTUs and batching them together in order to
create a single LoRaWAN packet, and (b) the LoRaWAN’s
Packet Transmitter, in charge of processing the packets and
transmitting them. In the following, we characterize these two
sub-queues.

a) DTU Aggregator: The DTU Aggregator can be mod-
eled as a G/D/1 queue, where )\S(H;)) is the input arrival rate

(dimension: [DTU/s]) of the single DTUs and T acc is the
average service time (dimension: [s]) needed to aggregate
a packet.® To this end, the G/D/1 queue model has been
chosen, as the DTU arrival distribution can, in principle, be
general, while the service time is deterministic, as it depends
(uniquely) on the number of DTUs flowing into the DTU
Aggregator. The behavior of the DTU Aggregator guarantees
a trade-off between LoRaWAN packet length maximization—
and, consequently, LoORaWAN throughput maximization—and
minimization of the waiting time inside the buffer of the
DTU Aggregator. In particular, a maximum waiting time,
defined as t,,.x (dimension: [s]), is introduced: after ..y,
even if the number of DTUs in the buffer is smaller than
the maximum (denoted as n) allowed in a single LoRaWAN
packet payload, the DTUs are aggregated and, then, sent to the
Packet Transmitter. As a consequence, this approach allows
DTUs inside the DTU Aggregator to incur a limited waiting
time, as a trade-off between aggregated packets with small
payloads (low throughput and short waiting time) and with
large payloads (high throughput and long waiting time).

On the basis of the above assumptions, multiple DTUs will
be aggregated together, up to a maximum of n DTUs, if and
only if the inter-arrival times between consecutive DTUs is
shorter than t,,,x. Otherwise, the “incomplete” packet will be

SAs an example, in the case of LoRaWAN, the average number of DTUs
in a single packet depends on the specific Spreading Factor (SF) chosen for
the UL transmission [32].

5The communication interface subscript used in Subsection IV-A is elimi-
nated for notational simplicity.
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Fig. 11: Flow diagram of the DTU Aggregator module.

sent to the next sub-queue in Fig. 10 (i.e., the Packet Transmit-
ter) as-is. For the sake of clarity, the flow diagram detailing the
behavior of the DTU Aggregator is shown in Fig. 11 and the
meanings of the indicated parameters are the following: )\(U‘{:)
represents the average arrival rate (dimension: [DTU/s]) of the
DTUs and, since the DTU Aggregator’s model is based on a
G/D/1 queue, the arrival rate )\ can be derived according
to Eq. (4) (i.e., based on the ] -in-to-1-out information flow
assumption). Moreover, it is possible to express the arrival
rate as a function of the average inter-arrival time as follows:
UL DL 1

- -7 g
where T is the average inter-arrival time (dimension: [s])
between consecutive DTUs and depends on the distribution
of the DTU arrival process—this will be further discussed in
Section VI.

Owing to the previous discussion, considering (i) the av-
erage inter-arrival time T between DTUs, (ii) the average
DTU size Lpu, (iii) the threshold value of the waiting time
tmax, and (iv) the DTU Aggregator flow diagram shown in
Fig. 11, it is possible to evaluate the average LoRaWAN
packet aggregation time and the average arrival rate Apgg
(dimension: [pkt/s]) at the input of the LoRaWAN Packet
Transmitter. By using the total probability theorem one can
write:

S

E[Tacc] = Y E[TacclAi] - P(A) 6)
=1
where:
A] = {TZ > tmax}
. — {TZ < tmaxa .. T < tmaxaTiJrl > tmax}u (7)
1=2,...,n—1
An £ {T2 < tmaxa <o 7Tn—l < tmaxyTn < tmax}
and
E[Tacc|Ai] = E[Taca,,] (®)

where:

ZTj+tnlax 1§’L<TL

o ©9)
=1

A
TacG =

Since {T;} are independent and identically distributed,
defining Ppayx = P{T; > tmax} One can write:

1_mei_1'Pm'1x =1,..., -1
P(,AZ) — ( a ) . a Z n

(1 = Ppax)™ i =n.

(10)
From Eq. (6), one obtains:
o n—1 A .
TAGG - Z ZTJ + tmax . (]- - Pmaux)l_1 . Pmax
i=1 \j=1
<ZT ) — Prnax)" (11)

Finally, observing that T; = T, Vi € {1,...,n}, it follows:

n—1

TAGG = Z (Z : T + tmax) : (1 - Pmax)i71 : Pmax
=1
+ 1T (1 = Pax)™ L. (12)

Similarly, one can obtain the average quadratic value of Thcc
as follows:

ElTRcc] = 3 E[TRoc i) -
1=1
n—1

—Z]E[ ZT + b))

(1 —Pmax)i*1
+ E[ ZT ]

b) Packet Transmitter: In order to evaluate the waiting
time in the buffer of the LoRaWAN Packet Transmitter,
modeled as a G/G/1 queue, one can rely on Kingman’s
formula [33]:

— [ p C2+C2\ <
e (755) (557)

where: p £ Mage - S1, (adimensional); Sy, is the average
service time of the LoRaWAN server (dimension: [s]); and C,,
and C, are the coefficients of variation of arrival and service
times (adimensional), respectively.

The coefficient of variation of arrival times C, can be
expressed as:

P(A;)

'Pmax

L (13)

max

(14)

g
Co = T?GG = OTygo " MGG (15)
pPYNeTe!
where 1
Aaga = = (16)
AGG
and
0Fae = BlTRaa] — E[Tacc]®. (17)
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In order to evaluate the coefficient of variation of the
service time, denoted as Cj, further analysis on the LoORaWAN
protocol behavior and policy rules is required. First, the service
times’ distribution should be related to the LoRaWAN packet
size, thus associating each packet configuration (with a specific
number of aggregated DTUs) with a proper probability, which
depends on the parameters of the DTUs’ source generating
distribution. As an example, assuming an average DTU size
Lpry = 20 bytes (as will be detailed in Section VII) and
considering a maximum LoRaWAN useful achievable payload
size equal to 222 bytes,” the maximum number of DTUs
possibly inserted into in a single LoRaWAN packet would
be equal to 11, which would then correspond to the specific
value of the parameter n in the previous derivation (e.g., in
Fig. 11).

Then, taking into account the DTU size and the LoRaWAN
constraints, it is possible to evaluate the service time of
the LoRaWAN G/G/1 server. The service time of a packet
containing ¢ € {1,...,n} aggregated DTUs, denoted as Sr,,,
can be expressed as follows:

SLi = TPPR,OC—z‘ + TPAIR, + TPDUTYCYCLE (18)

where: Tp,.oo , 18 the internal processing time (dimen-
sion: [s]) associated with + DTUs and can be expressed as

TPPR.OC—i = iTDTUPROC ) (19)

Tp, . is the packet airtime (dimension: [s]) and can be
expressed as [34]

Tp,x = (nPREAMBLE + 4.25) B

8 + ma 8PL —4SF +28+ 16 — 20H
* 1(SF — 2DE)

o (20)

+ BW 5

w(CR+4),0)

and Tpryovers 15 the LoORaWAN duty cycle time (dimen-
sion: [s]) and can be expressed, according to the regional
parameters [32], as

Trpurvevers = 099 - Tpy g - (2D

In the formulas above: Tprupro. depends on the specific
HW platform which the MIG builds upon; the LoRaWAN
preamble size, denoted as nprEAMBLE 1S set to 8 byte; SF =
7, BW =125, DE = 0 (low data rate optimization), CR = 4
(coding rate); and PL (LoRa packet payload), which includes
a 13 byte LoRaWAN packet header and the aggregated DTUs,
can then be expressed (in our model) as PL = 13+ n- Lpty.
These LoRaWAN-related parameters have been set according
to the LoORaWAN regional parameters [32].

According to Eq. (18), the LoRaWAN packet service times
{Sw,}i—,, with n = 11, depend on the packet dimension. In
particular, the service time ranges from Sr, = 7.2 s (packet
with 1 DTU) up to 51, = 37 s (packet with n = 11 DTUs).

The average service time, denoted as S1, can be calculated
by applying the total probability theorem on the partition

"This value depends on the operating region and the SF chosen for the
transmission. In particular, the payload size equal to 222 bytes has been
obtained with SF7 and a BandWidth (BW) equal to 125 kHz [24].

{A;}"_, in Eq. (7) and the service time defined by Eq. (18),
thus obtaining:

5y, = zn:n«:[smi] - P(A;)

i=1

=S, - P(A)
=1

n—1
= Z SLl(l - Pmax)i71 : Pmax + SL,,,(]- - Pmax)n71 .
=1

(22)
Similarly, one can write
E[SP] =D E[SE|A] - P(A)
i=1
n n—1 2
i=1 i=1
: (1 - Pmax)iil : Pmax
+ IE[S%J (1= Pra)" L. (23)

At this point, the variance of the service time, denoted as
U%L, can be calculated as follows:

og, =E[Sf] - E[SL]?. (24)

The coefficient of variation of the service time C can thus be

expressed as

c, =25
S

(25)
L

At this point, one can evaluate the average waiting time in
the buffer, denoted as WEIL), according to Eq. (14).

Finally, knowing 7. (Eq. (14)), Sy, (Eq. (22)), and Taga
(Eq. (12)), it is possible to calculate the overall average time
(denoted as TPKT,SOJL) that each DTU is expected to spend
at the LoRaWAN communication interface (namely, DTU
Aggregator and Packet Transmitter), from the time instant of
DTU arrival to the time instant of packet (in which the DTU

has been aggregated) departure, as follows:

Tpkr-s03, = W;L) + S+ ch);G . (26)

2) BLE G/G/I Queue: Focusing on the BLE interface, its
G/G/1 queue model is similar to the one detailed in Sub-
section IV-Bla. More specifically, the BLE DTU Aggregator
has the same behavior of the LoRaWAN DTU Aggregator,
while a proper G/G/1 queue, associated with the BLE Packet
Transmitter, must be defined according to the BLE protocol
rules.

BLE packets can have a larger dimension (with maximum
corresponding to 512 bytes) than LoRaWAN ones. Therefore,
the BLE DTU Aggregator is required to aggregate up to
n = 25 DTUs. Moreover, similarly to the LoRaWAN DTU
Aggregator, even for the BLE DTU Aggregator one can intro-
duce the parameter t,,,x, Which takes the same value as the
one considered in Subsection IV-Bla. The same holds for the
other parameters (e.g., )\](3133), in order to fairly compare the
(UL)

performance of all communication interfaces. Hence, )\B(_ )
mn
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can be calculated as in Eq. (5), while Tacq and o7, ., can
be evaluated as in Eq. (12) and Eq. (17) (relying on the state
diagram in Fig. 11).

The main difference between BLE and LoRaWAN models
is related to the service time of the G/G/1 queue modeling
the Packet Transmitter. In fact, with the BLE protocol no duty
cycle is used, thus resulting in a significantly shorter average
service time. However, the BLE protocol requires the MIG
(active as master) to connect to a BLE slave device before
being able to communicate with it. Therefore, the BLE model
has to take into account this connection time, denoted as
Tconng (dimension: [s]). On the basis of our experimental
investigation, TCONNB = 7 s. The BLE packet service time
can thus be calculated as

SB'i = TPPROC—@' + TCONNB 27)

where Tp, ..., defined by Eq. (19), is the processing time
required to create a packet which aggregates ¢ € {1,...,n}
DTUs.

Hence, once all BLE packet service times {Sp,}" ; are
calculated (similarly to the service times {Si,}/ ; detailed
in Subsection IV-Bla for the G/G/1 queue of the LoRaWAN
Packet Transmitter), it is possible to evaluate the average
waiting time in the buffer of the G/G/1 LoRaWAN queue
according to Eq. (14), which still holds for the BLE protocol.
Finally, the overall average time spent by the aggregated
packet in the BLE interface, denoted as TpPKT-S0 Jg»> can be
calculated as follows:

TpKT-S0J; = W( +Sp + TAGG (28)

3) Wi-Fi and Cellular G/G/I Queues: Given their similar-
ity, in terms of performance and behavior, these two interfaces
can be modeled in the same way. Since Wi-Fi and cellular
interfaces have a significantly higher throughput than BLE and
LoRaWAN interfaces, a batching operation on the incoming
DTUs is not required and, then, the DTU Aggregator is no
longer present in their corresponding models. Therefore, both
Wi-Fi and cellular interfaces (UL) queues can be modeled
as single G/G/1 queues and, furthermore, simplified to G/D/1
queues. In fact, the service time for each DTU can be seen
as the sum of a fixed processing time (denoted as {pTUproc
and equal for both interfaces) and a fixed latency (denoted as
tLATENCY and tpaTENCY for Wi-Fi and cellular interfaces,
respectively): they can thus be modeled as deterministic. In
other words, one can write:

(29)
(30)

SW = tDTUproc + ILATENCYw

Sc = tDTUproc + LLATENCY -

Since the service time is deterministic, the coefficient of
variation of the service time Cs becomes equal to 0. Therefore,

the waiting time in the buffer, given by Eq. (14), reduces, in
the Wi-Fi and cellular cases, to

W) _ _pw (C’gW)) 2 S

W 31
q = w2 w (31)
2
C(C))
==(C) pC ( “
_ 2
Wy 1= o 5 Sc (32)

where: Sw and S¢ are the Wi-Fi and cellular serV1ce times

(Eq. (29) and Eq. (30), respectively); pw = )\W( )) - Sw and
= /\(C[g ) -S¢ (depending on the interface); C'(W) Ug}il&
UL C) c UL
)\(W( ) and O = oy ALY

Finally, it is p0551ble to obtain the average waiting time W,.
The overall times spent by a DTU at the Wi-Fi or cellular
interfaces can then be expressed as

77 (W)

Toru-sosw =W, +Sw (33)
Tpru-sose = Wfl +Sc (34

w7 (W) 7(C) .
where W~ " and W ° can be computed as in Eq. (31) and

Eq. (32), respectively.

As final remark, the main difference between Wi-Fi and
cellular Packet Transmitter queues is that, according to exper-
imental measurements, {L,ATENCYw - {LATENCY.. 10 other
words, the cellular interface has a significantly longer sojourn
time (due to technological reasons). This aspect, further de-
pending on the specific cellular protocol version (e.g., 4/5G),
may introduce a relevant latency in some applications.

V. SIMULATION-BASED PERFORMANCE EVALUATION

In order to validate the analytical queuing model detailed in
Subsection IV-B, a Python-based simulator has been developed
taking into account all the blocks considered in the analytical
model. More in detail, the simulator includes a DTU Generator
with DTU inter-arrival time having a uniform distribution
Ulta,tp] [35]. The DTU Generator generated the DTUs to be
processed by the interface queues. In particular, the following
reference values are initially considered: for all interfaces,
ta =08, tinax = D S, fDTU = 20 bytes, TDTUPROC = 20 ms;
for the BLE interface, TCONNB = 7 s; for cellular and Wi-Fi
interfaces, tLaTENCY, = 50 ms and {LaTENCYw = 10 ms,
respectively.

By generating 1,000 DTUs,® we characterize each com-
munication interface according to the following performance
metrics: (i) server utilization ratio p; (ii) average service time
S; (iii) waiting time W, in the buffer of the G/G/1 queue
and/or G/D/1 queue (depending on the presence or absence
of the DTU Aggregator), and (iv) sojourn time ToTu—_s0J
(which includes, in the LoRaWAN and BLE cases, the DTU
aggregation time). The selected metrics are relevant for the
following reasons.

o The average service time allows to estimate the process-
ing time required by each protocol to serve packets.

80ur results show that this number of DTUs is statistically sufficient for
performance evaluation, as will be seen by the confidence intervals of the
simulation results presented in the following.
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o The sojourn time is relevant to understand the overall time
spent by the data in the system and, consequently, the
latency introduced by the MIG in routing data between
heterogeneous communication interfaces.

o The server utilization ratio is expedient to understand the
load of the interface server, thus allowing to estimate if an
information flow increment can be tolerated. Moreover,
the server utilization ratio might be useful for energy
consumption optimization purposes (e.g., to maximize
battery energy savings with a battery-powered MIG).

As the analytical model in Section IV, the Python-based
simulator as well does not take into account the physical
characteristics of the wireless transmission channels associated
with the communication interfaces of the MIG. In other words,
we assume that the corresponding communication channels are
ideal. Extending the simulator to take into account the channel
status is an interesting research direction.

In order to estimate the accuracy of the simulated per-
formance indicators, we evaluate the Confidence Interval
(CI) [36] of each simulation point as follows:

g
V/ Msim
where: z* is the z star parameter, set to 1.96 (as defined
in [36]) to obtain a 95% confidence interval; o2 is the variance
of the analyzed indicator, obtained from the simulator’s output;
Nsim corresponds to the population number, equal to the num-
ber of DTUs processed by the simulator, i.e., ngm,m = 1,000.

Cligsy) = 2" - (35)

A. Evaluation of the Server Utilization Ratio

In order to analyze the stability conditions of the different
communication protocols, we investigate the behavior of the
server utilization ratio of each interface as a function of ¢
(keeping all other parameters equal to the values set above),
with DTUs’ generation according to a uniform distribution
U[0, ty) (i-e., we assume t, = 0). Therefore, the average inter-
arrival time T can be calculated as follows:

— t
T=2.
2

In Fig. 12, analytical (an) and simulated (sim) server
utilization ratios for the following interfaces are shown: (a)
LoRaWAN; (b) BLE; (c) Wi-Fi; and (d) cellular. This allows to
directly compare (and validate) the performance predicted by
the Markov chain-based analytical model with that predicted
by the implemented Python simulator. From Fig. 12(a), it
can be observed that pflm) = pgm) = 1 for t, ~ 10 s.
Hence, it can be concluded that the LoRaWAN interface
cannot support a DTU generation distribution /[0, #;,] with
t, < t](:)mme) ~ 10 s. In other words, at most one DTU every
10 s can be, on average, handled by the LoRaWAN server.

Regarding Fig. 12(c) and Fig. 12(d), related to Wi-Fi (pw)
and cellular (pc) server utilization ratios, respectively, it can be
noted that p{™™ = pS™) =1 for #, ~ 0.124 s, while p{2") =
p%s\,;m) =1 for ¢, ~ 0.056 s. A very good agreement between
simulated and analytical performances can be observed.

Finally, looking at Fig. 12(b), it can be concluded that
the BLE interface can properly handle incoming DTUs for

(36)

t, > tt()minfB) ~ 0.6 s. Furthermore, from the analytical

results one can notice that the BLE interface reaches a peak
when ¢}, ~ 5 s. This corresponds to the value of the parameter
tmax, defined in Subsection IV-B1a, that maximizes the DTU
aggregation process. This analytical result is confirmed also
by simulation values and is further explained through an in-
deep analysis of the behavior of the DTU Aggregator carried
out in Subsection V-B.

B. Impact of the DTU Aggregator on the Server Utilization
Ratio

In order to better understand the impact of the DTU
Aggregator on the server utilization ratio p, we investigate
the BLE case, i.e., the behavior of p shown in Fig. 12(b) and
predicted by our analytical framework. Recall that the inter-
arrival time between consecutive DTUs is T ~ U[0, t,], with
average value T = t;,/2. In Fig. 13, we highlight the analytical
behavior of p, as a function of ¢;,. It is possible to identify the
following regions/values:

e 0 <ty < tf)mm*B) < tmax: instability region correspond-
ing to p > 1 (interval (a) in Fig. 13);

. témm_B) < t, < tmax: first stability region, where p
decreases until reaching a local minimum (region (b) in
Fig. 13);

e 1 > tmax: second stability region, where p further de-
creases, from “sudden” peak around £y, >~ a4« (region (c)

in Fig. 13).

As mentioned above, there is a sudden peak, in the analyt-
ical curve, around t, = t,,,—We remark that the simulation
results, depicted in Fig. 12(b), show a “smoothed” version of
this sharp analytical peak. In the following, we motivate this
behavior.

1) Instability Region: For 0 < t, < t™" P with
t,gmm_B) ~ 0.6 s, it holds that p](;n) > 1: the system is
unstable, as the server cannot process all the incoming packets.
In fact, the inter-arrival time 7' has always a value smaller
than t,,,x, so that the DTU Aggregator always aggregates the
largest possible number of DTUs (namely, n = 25 for the BLE
interface) in each packet. In this region, the average packet
generation time T acc (which can be written as defined by
Eq. (11)) is shorter than the average service time Sg of the
Packet Transmitter, defined according to Eq. (27). For the sake
of clarity, this unstable behavior is illustrated in Fig. 14: the
DTU Generator generates packets at a rate which cannot be
sustained by the Packet Transmitter.

2) First Stability Region: This region is associated with
values of t, such that tl()mme) < tp, < tmax. In this
region, each packet derives from the aggregation of the largest
possible number (namely, n) of DTUs. Unlike the previous
instability region, in this case the average packet generation
time T acqq is longer than the average service time Sy of the
Packet Transmitter. This situation is pictured illustratively in
Fig. 15: the Packet Transmitter manages to serve efficiently
the received packets. The service utilization ratio decreases as
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Fig. 13: Behavior of ;)iBa ™) in the assumption of fixed DTU
inter-arrival time 7' =T = ¢}, /2.

the packet arrival rate reduces and the service time does not
change.’

3) Second Stability Region: As can be observed in Fig. 13,
in correspondence to t, = tyax there is a sharp increase of
,01(3a n), which then decreases for increasing values of ty,. This
behaviour can be explained as follows. As soon as tj, over-
comes tpax, it then follows that each generated packet does
not necessarily contains the maximum number n of DTUs:
for example, if the inter-arrival time between two consecutive
DTUs is longer than ¢,,.x, then a packet is generated. This
means that the packet arrival rate at the Packet Transmitter
increases. However, as shown in Section IV, the connection

°In Section IV, it has been shown that the service time of the BLE Packet
Transmitter is associated with the average connection time T'conng and
with the number of DTUs present in the aggregated packet. Since the number
of DTUs in each packet is the largest possible (equal to n), then it follows
that the service time of each packet is the same.

time Tconng 1S the largest component of the service time
of a BLE packet: this implies that even if the number of
DTUs aggregated in a packet reduces, its service time reduces,
proportionally, much less. This explains the sudden increase
of the server utilization ratio for ¢, ~ ¢;,.x. For increasing
values of %y, both the packet arrival rate and the number of
aggregated DTUs per packet reduce, thus leading to a constant
decrease of p](; n). In the limiting case with ¢, > t;,.x, €ach
packet contains only one DTU, as shown in Fig. 16.

We remark that the simulation-based results shown in
Fig. 12(b) approximate the behaviour predicted by our ana-
lytical model. There is not the sharpest increase predicted by
the analytical model as the number of DTUs considered for the
simulation is finite (namely, 1,000). By increasing the number
of DTUs, the simulation-based curve would approximate more
and more the analytical one.

In order to further investigate the presence of the peak
of the server utilization ratio for ¢, ~ tyax, in Fig. 17 we
evaluate the analytical queuing server utilization ratio p(®"), as
a function of the parameter ty,, associated with a uniform DTU
generation distribution /[0, t,], for various values of &ax
(in detail, 5 s, 10 s, and 15 s), considering both LoRaWAN
(Fig. 17(a)) and BLE (Fig. 17(b)) interfaces. The obtained
results confirm how the server utilization ratios is influenced
by the parameter ?,,,x of the DTU Aggregator. This parameter
affects the system efficiency by reducing, for small values
of tmax, the “idle times” between aggregated packets sent
to the interface server. For the sake of completeness, this
behavior is further investigated in Section VI in the presence
of other (non-uniform) input distributions. This will allow to
further highlight how the peaks, for both LoRaWAN and BLE
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set to 5 s, 10 s, and 15 s, for (a) LoRaWAN and (b) BLE interfaces.
interfaces, are due to the DTU Aggregator.

C. Evaluation of Average Service and Sojourn Times

Fig. 17: Analytical server utilization ratio p(an) as a function of ¢, (with DTUs’ generation distribution [0, ty,]), with ¢ax
It is of interest to investigate the behavior of (i) the

average service time S of each interface’s server and (ii)

the total average time spent by a DTU at each interface,

y-axis is limited'” and Tpry_gog grows rapidly at t, ~ 0 s
(as observed in Fig. 12(c) and Fig. 12(d)).

D. Impact of SF on LoRaWAN DTUs’ Aggregation
namely: LoRaWAN (TPKT,SOJL) and BLE (TPKT,SOJB),
as defined in Eq. (26); and Wi-Fi (TbTu-soJ,,) and cellular
(TDTU_SOJC), as defined in Eq. (33) and Eq. (34), respec-
tively. The obtained results (with the corresponding confidence
interval of each simulation point) are shown in Fig. 18. For the
sake of clarity, we highlight that, even if these performance
metrics have been studied as functions of ¢, € [0,60] s, in

Fig. 18 the results are shown for ¢, € [0,30] s, since for

With regard to the LoRaWAN interface, it is of interest to
ty, € [30,60] s the performance metrics flatten. In other words,

investigate the average service time and the number of DTUs

i.e., when ¢t

that can be aggregated within a single LORAWAN packet as
—(an)

the most interesting behavior is observed for ¢, € [0, 30] s.
From the results in Fig. 18(a), related to LoORaWAN, it can
be noticed that the average service times

(T'pkr—s07;

functions of the SF. The obtained results, both analytical and
g(a.m)
are in very good agreement. In particular, ELS ) reaches its

simulation-based, are shown in Fig. 19. It can be observed

and ?is )
< tmax. With 1

S

that (as suggested by the LoRaWAN specifications [24])
increasing the SF (i) limits the amount of DTUs possibly being
aggregated and (ii) significantly increases the average service
significantly increasing S.

i
) and simulated (T;m)

E. Final Considerations
saturation value when the DTU aggregation is maximized,

time needed to process packets with aggregated DTUs, thus

KT-S0J,) sojourn times,
given the fixed amount of DTUs processed in the simulator

ard to average analytical
(namely, 1,000 as indicated at the beginning of Section IV), it

is possible to calculate the average waiting time of a DTU
B

even when the analytical queuing model reaches pr, = 1
in Section IV.

the main performance indicators investigated before, in the
ta = 0 s and ty

For the sake of readability and analysis, and to ease a
case of uniform distribution U[t,, t,] of generated DTUs, with

performance comparison between the Markov chain-based
(for t, ~ 10 s), thus confirming the overall behavior of the

model and the implemented Python simulator, in Table II
system predicted by the Markov chain-based model proposed

performing.

confirm that the most constrained communication interface
Similar considerations can be carried out for Fig. 18(b),

referring to the BLE interface. It can be observed that both
Ar(sim)

15 s, are summarized. These results
is the LoRaWAN one, followed by the BLE interface and,
and ngm) reach their maximum possible values when
tb < tmax (i.e., when the BLE aggregated packet size is
maximized), while T?IQ‘)T,SO J, &rows rapidly for ¢, ~ 0.6 s,

DTUs) are:

then, by the cellular, with the Wi-Fi interface being the best
evaluate the average data rate, denoted as 1, achieved by each

Finally, through the developed simulator it is possible to
th =~ tmax = 0.5 s, as already detailed.

communication interface equipping the MIG itself. More in
detail, the simulated average data rates (over 1,000 generated
. @L = 28.657 bps for the LoRaWAN interface;
. %B = 46.725 bps for the BLE interface;
e Yo = 2,139.8 bps for the cellular interface;
as confirmed by T’y _g0y,, - Furthermore, it can be observed
both analytical and simulation sojourn times have a peak at
Finally, Fig. 18(c) and Fig. 18(d), referring to Wi-Fi and cel-
lular interfaces’ analytical and simulated service and sojourn
times, respectively, confirm how analytical and simulation
results are in very good agreement—note that the range of the

o Yy = 5,479.32 bps for the Wi-Fi interface.

range of the y-axis.

It can be concluded that the LoRaWAN interface has a
guidelines with the same configuration (namely, 48 bps [24]).

data rate v; close to the value predicted by the protocol

10We remark that the seemingly irregular behavior of the curves of both the
Wi-Fi and cellular simulated service and sojourn times is due to the reduced
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Fig. 19: LoRaWAN analytical (S L ) and simulated (S; )
average service time and number of DTUs per aggregated
packet as a function of the SFs allowed by the LoRaWAN
protocol.

The other interfaces may be limited by the system’s specific
implementation, which reduces the useful payload processed
by the MIG and introduces a high overhead, thus significantly
lowering the achievable data rates. This is especially true for
Wi-Fi and cellular communication interfaces. Moreover, the
cellular technology is also affected by a higher average latency
introduced by the network topology. These constraints are
further investigated in Section VII, where the experimental
performance evaluation of the MIG prototype introduced at
the beginning of Section III is carried out. Possible additional
improvements to overcome limitations of the proposed MIG
implementation will be discussed in Section VIIIL.

TABLE II: Comparison among analytical and simulation-
based values with T~ [0, 15].

Term Analytical Value | Simulation Value

W 0.0037 0.0032

C 0.0083 0.0081

B 0.57 0.60

oL 0.70 0.75
Tacay 12.50 s 11.85 s
TAGGB 12.50 s 11.87 s
W 0.19 s 162 s
Wi 0.068 s 0.18 s
w." 0.000058 s 0.0025 s
W 0.00029 s 0.0038 s
Sw 0.028 s 0.025 s

Sc 0.062 s 0.062 s

Sy 7.11s 7.12s

Sy, 8.73 s 8.88 s
TpPKT-S0J;. 21.42s 22.35 s
TpPKT-SOJg 19.68 s 19.16 s
TDTU-S0Jy 0.028 s 0.028 s
TDTU*SOJC 0.062 s 0.065 s

VI. IMPACT OF DTU INTER-ARRIVAL TIME
DISTRIBUTION

A. Inter-Arrival Time Distributions

While in Section IV and Section V the performance of
the MIG has been investigated (analytically and with simula-
tions, respectively) in the presence of DTU inter-arrival time
T € Ulta,ty) (with t, = 0 s and several values for ¢y),
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it is of interest to investigate also the impact of non-uniform
DTU inter-arrival time distributions. According to Eq. (5), in
the LoORaWAN and BLE cases the average input arrival rate at
the DTU Aggregator depends on the average inter-arrival time
T between DTUs. In the following, we investigate the impact
of three non-uniform DTU inter-arrival time distributions on
system performance: (i) truncated Gaussian, (ii) exponential,
and (iii) gamma.

Since, in Section V, the accuracy of our analytical model has
been validated by our simulator, in the following we investi-
gate the impact of the input distribution only analytically. More
specifically, our goal is to investigate the impact of the input
distribution on the server utilization ratio. In the LoRaWAN
and BLE cases, we will further evaluate the impact of the
following DTU Aggregator.

For the sake of comparison between the aforementioned
non-uniform distributions, their corresponding parameters are
summarized in the following. In order to make a fair com-
parison, we will assume that all distributions have the same
average value. In order to make a fair comparison with the
previously considered uniform distribution, in all cases the
average value is set to u = (t, +tp,)/2.

1) Truncated Gaussian Distribution: The truncated Gaus-
sian distribution can be derived from an initial Gaussian distri-
bution [37]. The corresponding Probability Density Function
(PDF) is expressed as follows:

1 _1l(z—p)2
e 2( ° )
oV 2T
where 1 = (tp+t,)/2 and o is the variance. By truncating the
normal distribution A/ (11, o2) over the interval [t,, },], the PDF
of the corresponding truncated Gaussian distribution becomes

¢ (p,0%a) =

(37)

0 if z <t,
2 . ¢(n,0%5 .
bp, 0% ta, th; ) = ‘I’(I—L702;t(b)*(1’(2«,021,ta) ifta <z <ty
0 if x > tp.

(38)
Since the truncated Gaussian distribution is still symmetrical
with respect to p, its mean value is still equal to u = (¢, +
ta)/2.

2) Exponential Distribution (Poisson Arrivals): The expo-
nential distribution characterizes the inter-arrival time of a
Poisson DTU arrival process [37]. The corresponding PDF
can be expressed as follows:

Lemu ifz>0
e(um:{ﬂe o

T8

0 ifz <0 39
where p is the average value.

3) Gamma Distribution: The gamma distribution is a 2-
parameter distribution [37] with the following (general) PDF:
ﬁ“za_le_ﬁ x

I'(a)
0 otherwise

if x>0

V(o Bsx) = { (40)

where: o > 0 and S > 0 are shape parameters; and I'(«) is
the Gamma function defined as

I'(a) é/ 2* e dx fora>0. (A1)
0
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Fig. 20: Comparison plot of the PDFs of the uniform, truncated
Gaussian, exponential and gamma distributions, with £, = 0's,
tp, =15s,and u=7.5s.

The average value of the gamma distribution is «/8: for
comparison fairness, we impose y = «/f3. In the case with
B =1, it follows that

(ta + tb)

4) Distributions Comparison and Motivation: In Fig. 20, a
graphical representation of the PDFs of the four considered
DTU inter-arrival time distribution, with ¢, = 0 s and
t, = 15 s, is shown. As indicated above, in all cases the
average value is p = (t, +t,,)/2 = 7.5 s. The choice of the
aforementioned distributions can be motivated as follows.

The uniform distribution is the reference distribution
adopted in our analytical, simulation, and experimental per-
formance analysis, since it is suitable to represent the DTU
inter-arrival time in several IoT applications, especially where
multiple sensors are involved and randomly (over a reference
sampling interval) transmit data to the MIG.

The truncated Gaussian distribution has been chosen to
characterize an application where the DTU inter-arrival time
concentrates more, with respect to the uniform distribution,
around its mean value. The truncated Gaussian distribution is
more suitable to represent multiple sensors transmitting data
to the MIG with a pre-defined polling interval corresponding
to the average value. However, due to possible problems
(e.g., synchronization errors, packet delays or collisions), some
sensors might transmit their data a bit earlier or later than the
pre-defined update instant, making the DTU inter-arrival time
distribution similar to a truncated Gaussian PDF.

The exponential distribution has been taken into account
because it is commonly used in queuing theory to model an
arrival process. It is meaningful for IoT applications where a
“memoryless” data transmission strategy might be adopted by
IoT nodes interacting with the MIG.

Finally, the gamma distribution has been taken into account
as it can be interpreted as an intermediate distribution between
Gaussian and exponential distributions.

a=pu-B= (42)

B. Impact on the Server Utilization Ratio

We now investigate the impact of the inter-arrival time
distributions presented in Subsection VI-A on the server
utilization ratio p. This analysis aims at evaluating the stability
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Fig. 21: Analytical (a) LoRaWAN (pr,) and (b) BLE (pp) server utilization ratio as a function of ¢y,, with ¢,,,x = 5 s, for

different distribution, namely, uniform distribution (pIEU) and p](3U), respectively), truncated Gaussian distribution (pi ¢

(TG) (E)

pp »respectively), exponential distribution (pp, (E)

and pp

of the MIG as a function of the average DTU inter-arrival time
T.1Inall cases, t, =0s,t, =15s, T =t,/2 = 7.5 s. In the
LoRaWAN and BLE cases, t,,.5 1S set to 5 s.

In Fig. 21(a), we focus on the LoRaWAN interface. When
th < tmax, the LORaWAN server utilization ratio with uniform
distribution (denoted as p(U)) and with the truncated Gaussian
distribution (denoted as pIg:TG)) have almost the same behavior.
At the opposite, when ¢, > tnax, the truncated Gaussian
distribution slightly increases the server utilization ratio. A
similar behavior is experienced with both exponential (denoted
as péE)) and gamma (denoted as piG)) distributions, with pIEE)
being higher for high values of t},, while obtaining a higher
piG) for tmax < tp < 30 s.

In Fig. 21(b), we focus on the BLE interface. The general
trends of the BLE server utilization pp (based on the various
distributions) is similar to that shown for the LoRaWAN
interface in Fig. 21(a). However, pp is more affected by the
chosen input distribution. More in detail, when ¢, < tax,
both the truncated Gaussian and the uniform distribution return
the same behavior (in terms of pgj) and ng)), while for
ty > tmax, p](3TG) reaches higher values. The difference be-
tween gamma and exponential distributions is also accentuated
(especially when ¢, < 40 s), with largest difference for
ty ~ 16 s.

Recalling the presence of the DTU Aggregator for both
LoRaWAN and BLE interfaces, it can be observed that: (i)
different distributions, even with the same average value,
impact on the server utilization of the corresponding Packet
Transmitter; and (ii) the uniform distribution offers the best
performance, guaranteeing the lowest server utilization ratio
for both LoRaWAN and BLE interfaces.

In Section V, we have investigated the presence of a peak
for both LoORaWAN and BLE server utilization ratios (due to
the DTU Aggregator) with a uniform distribution for various
values of fax. In Fig. 22 and Fig. 23, a similar analysis is
carried out with the considered non-uniform distributions and
two values of ., namely 10 s and 15 s. As expected,
increasing the value of ., shifts the peak (in correspondence
to tp, =~ tmax) to the right and the server utilization ratio
decreases for both LoORaWAN and BLE interfaces (regardless
of the adopted distribution). However, as discussed in Sub-

, respectively), and gamma distribution (py,

T )and

(@)

(©) and B

, respectively).

section V-B, a higher value of t,,,x can increase the packet
length (e.g., aggregating more DTUs), but can also slightly
increase the waiting time of the DTUs inside the system, thus
significantly increasing the latency of the system as well.

Finally, since Wi-Fi and cellular interfaces do not need a
DTU Aggregator (with their corresponding servers directly
processing the incoming DTUs without any aggregation) and
have deterministic service times (much lower than those of
LoRaWAN and BLE interfaces), it turns out (as initially
expected) that the use of different DTU inter-arrival time
distributions has no impact on the server utilization ratios
(denoted as pw and pg, respectively). This is confirmed,
as shown in Fig. 24, by a complete overlap of pw and pc
for all considered input distributions (with the same average
value). It can thus be concluded that, unlike LoRaWAN and
BLE, specifying the DTU inter-arrival time distribution has no
impact on high-throughput communication interfaces.

VII. EXPERIMENTAL EVALUATION AND ANALYSIS

The topology of the overall experimental testbed is shown
in Fig. 25(a): the MIG (see Fig. 2a) is connected to 10 IoT
nodes (5 BLE and 5 Wi-Fi), based on the ESP32 SoC HW
platforms and equipped with either a DHT11 humidity sensor
or a temperature sensor [26]. In Fig. 25(b), a node with a
DHT11 sensor is shown. The MIG is connected to the closest
cellular base station (of the Italian network provider WindTre,
identified by Mobile Country Code, MCC = 222 and Mobile
Network Code, MNC = 88) through the 4G dongle, and
to a LoRaWAN gateway connected to the TTN network, as
depicted in Fig. 25(a).

As highlighted in Section III, the starting point of the
framework proposed in our work is a COTS device-based im-
plementation of the MIG. While the analytical Markov chain-
based queuing model and the Python-based simulator allow
to investigate several performance metrics, the experimental
testbed allows to investigate a limited number of metrics. From
a practical point of view, our prototypical COTS device-based
MIG does not allow to evaluate service times, sojourn times,
and server utilization ratios of the various interfaces. In order
to fairly compare experimental results with analytical and sim-
ulation ones, we evaluate the time needed to process a specific
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Fig. 24: Analytical (a) Wi-Fi (pw) and (b) cellular (pc) server utilization ratio as a function of ¢, for different distribution,
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amount of data—namely, a specific number of DTUs—at the
various interfaces. To this end, the performance comparison is
carried out by setting a common uniform distribution /[0, 15]
for the DTU inter-arrival time 7" at any interface. This choice
allows to compare the time needed by each interface to process
a similar amount of DTUs.

In the following, the experimental processing time (denoted
as TéRgC) and the simulator processing time (denoted as

, respectively), and gamma distribution (pyy;

(TS and péTG , respectively),
) and péG), respectively).

TS;{%C) have been obtained by measuring the difference

between the time instant of system initialization and the time
instant corresponding to processing completion of the last
DTU. The analytical processing time (denoted as TS;:)OC) for
Wi-Fi and cellular interfaces has been calculated by multiply-
ing the corresponding average sojourn time (TpTU—_s0 Jw and
TbTU_SOJ o respectively) of a DTU by the number of DTUs
needed to send the defined amount of information through the
specific interface. In fact, this allows to obtain an acceptable
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Fig. 25: (a) Real IoT testbed built for the experimental performance evaluation of the proposed MIG, involving: a RPi4-based
MIG implementation; a cellular base station; a LoRaWAN gateway; and 10 IoT nodes (5 BLE and 5 Wi-Fi). As shown in
(b), each IoT node is based on the ESP32 SoC and equipped with a DHT11 humidity and temperature sensor. For the sake
of readability, the IoT nodes are shown out of scale (with respect to the real distances among the MIG and both LTE and

LoRaWAN equipments).
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Fig. 26: Comparison among analytical (T;ag)oc), simulated (T;fli{ngc), and experimental (T;fﬁg)c) performance results obtained
on the different communication interfaces equipping the MIG, namely (a) LoRaWAN, (b) BLE, (c) Wi-Fi, and (d) cellular

interfaces.

estimation of the overall processing time needed to send the
chosen amount of data over the designated communication
interface.

The analytical, simulated, and experimental performance
results for LoORaWAN, BLE, Wi-Fi, and cellular interfaces are
shown in Fig. 26(a), Fig. 26(b), Fig. 26(c), and Fig. 26(d),
respectively. As can be seen from the results in Fig. 26, the
trends obtained through analytical queuing model, simulator,

and experimental testbed are very similar, with TSE%)C slightly
higher than both Tﬁfﬁrgc and TSEE)C' This is mainly due
to the additional processing times introduced by the current
MIG implementation based on COTS components, which
may partially degrade the performance with respect to that

predicted by both Markov chain-based model and Python

simulator.

For LoRaWAN and BLE interfaces (whose analytical, sim-

ulated, and experimental results are shown in Fig. 26(a) and

Fig. 26(b), respectively), Téa;())c can be expressed as follows:
7r(an)

Tproc =

AGG _ .
where: T](DTU) £ Npru/fipru—pkT is the number of

aggregated DTUs generated by the DTU Aggregator of Lo-
RaWAN or BLE interfaces, as Npry corresponds to the
amount of DTUs to be sent and mpTy_pkT is the aver-
age amount of DTUs inside a single aggregated LoRaWAN
or BLE packet at the output of the DTU Aggregator;
IlpkT_503 £ TpPKT-S0] /2 corresponds to the average time
spent into the queuing system, where TPKT_SO J represents

T(AGG)

DTU HPKT—SOJ (43)
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the overall time spent by the aggregated DTUs inside Lo-
RaWAN or BLE interfaces, respectively. In detail, [lpxT_s07
is obtained by dividing TpKT-S0] by 2 to take into account
the overlapping of aggregating and processing activities ot the
DTU Aggregator. In fact, while a packet is aggregated by the
DTU Aggregator, the Packet Transmitter is processing another
packet previously aggregated.

Looking at the results shown in Fig. 26(a) and Fig. 26(b),
it can be seen that T;;B)C (for both LoRaWAN and BLE) is
slightly underestimated if compared to both simulation-based
and experimental values. This might be due to the approxi-
mation of the Tpxr_sgoy introduced in Eq. (43). However,
the maximum approximation error is lower than 10% for
ngz)CL and lower than 15% for T;agz)CB, respectively, with
the relative error decreasing for larger amounts of aggregated
DTUs. Instead, simulated and experimental values seem to be
aligned (within a maximum 5% difference), thus confirming
the overall accuracy of the simulator when compared to the
experimental setup.

The obtained experimental results prove that the overall
performance of the proposed MIG prototype can be well
estimated using both the Markov chain-based model presented
in Section IV and the Python-based simulator discussed in
Section V.

VIII. IMPROVEMENTS AND FUTURE WORKS

Given the simulation and experimental performance results
shown in Section V, Section VI and Section VII, together
with the modularity of the proposed MIG architecture, further
improvements might be considered in order to improve its
performance. To this end, possible ideas are presented and
discussed in the following.

A. Enhanced Queuing Mechanisms and Packet Overhead Op-
timization

The use of the proposed SDB (detailed in Section III) for
DTUs’ queuing purposes partially limits the performance of
high throughput interfaces (such as Wi-Fi and cellular). To
this end, the implementation of a faster and reliable queuing
solution (e.g., based on Zenoh protocol [38]) may further
improve both reliability and performance of the MIG, making
it applicable to more complex and critical scenarios.

Moreover, the current version of the MIG is not optimized
for massive data transfer (through Wi-Fi and cellular inter-
faces). Hence, an enhanced implementation of the MIG with
a more efficient UDP socket creation and management might
improve the IP-based protocols’ performance. This would
significantly reduce the packet overhead currently affecting
the prototype and, in turn, improve the overall performance of
both cellular and Wi-Fi communication interfaces.

B. Exploiting BLE Connection Optimization and Advertising

Focusing on the BLE communication interface, as discussed
in Subsection IV-B2 the BLE capabilities seem to be mainly
constrained by the BLE connection time required by external
BLE end nodes to establish a communication link with the
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MIG. To this end, it might be possible to reduce idle times
by scheduling and optimizing the connection phase, allowing
also each external BLE node to keep its connection alive
and to exchange multiple BLE packets with the MIG. This
approach would drastically increase the maximum throughput
achievable by the BLE interface handler of the MIG, allowing
to approach the theoretical upper bound of the BLE application
level data rate.

Furthermore, a different BLE interaction scheme might be
adopted among on-field end nodes and the MIG, in par-
ticular for specific time-constrained applications—e.g., those
requiring only mono-directional communication. To this end,
one could exploit BLE advertising channels, where BLE end
nodes could act as independent GATT servers, broadcasting
new information (e.g., collected through their on-field sensors)
through the Packet Data Units (PDUs), which are then adver-
tised with a small interval on each available BLE advertising
channel. The MIG would act as a passive BLE scanner,
sensing for the available PDUs in the air and processing them
according to the rules detailed in Table I. As a consequence,
this would require the implementation of a new interface
entity in the architecture shown in Fig. 2(b), having to (i)
passively scan and detect BLE devices advertising PDUs and
(i) forward the PDUs to the SDB in the proper way. Given the
experimentally observed BLE connection time TSSII)\?NB ~7s,
it is clear that this alternative approach would allow to handle a
larger number of end nodes and to obtain a higher throughput
on the BLE communication interface (despite the limited
27 byte advertisement packet size) [39].

C. Al-based Interface Throughput Optimization

In order to optimize data transmission with a constrained
protocol (e.g., LoRaWAN), the design and deployment of
an on-board “data analysis block,” in charge of deciding if
an information is relevant (and needs to be forwarded to
high-layer entities) or irrelevant (and can thus be discarded,
avoiding to unnecessarily fill the MIG’s queues), might be
beneficial. More in detail, this data analysis block may be
performed by an Al-based entity assigning proper weights
(corresponding to the priorities in the system’s queue) to data,
thus leading to priority-based data transmission (in which
irrelevant data will be assigned small weights). This approach
could, in principle, increase the performance of the MIG’s con-
strained communication interfaces, prioritizing only relevant
data transfers, eventually exploiting innovative Al technologies
able to improve and optimize data transfer [40]. Moreover,
this can open the way to other next-generation paradigms to
be exploited in conjunction with the functionalities proper of
the proposed MIG (e.g., serverless and quantum computing).

IX. CONCLUSIONS

In this paper, the architecture of an enhanced modular
MIG, equipped with four heterogeneous communication inter-
faces (namely, LoORaWAN, BLE, LTE, and Wi-Fi), has been
presented, with reference to a specific prototypical COTS
device-based implementation. A novel Markov chain-based
queuing model, expedient to characterize the MIG behavior
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and evaluate its performance, has been proposed. A Python-
based software simulator has been implemented to further
validate the Markov chain-based queuing model’s predicted
analytical performance. Finally, the experimental performance
of the COTS device-based MIG prototype has been directly
compared to analytical and simulation-based performances,
showing a very good agreement. Our results highlight the
modularity and scalability of the proposed MIG architecture,
allowing the integration of heterogeneous communication in-
terfaces for several IoT applications and scenarios. Possible
MIG improvements have also been discussed.
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